923 resultados para Sistemas Multi-Agentes


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a new paradigm for collective learning in multi-agent systems (MAS) as a solution to the problem in which several agents acting over the same environment must learn how to perform tasks, simultaneously, based on feedbacks given by each one of the other agents. We introduce the proposed paradigm in the form of a reinforcement learning algorithm, nominating it as reinforcement learning with influence values. While learning by rewards, each agent evaluates the relation between the current state and/or action executed at this state (actual believe) together with the reward obtained after all agents that are interacting perform their actions. The reward is a result of the interference of others. The agent considers the opinions of all its colleagues in order to attempt to change the values of its states and/or actions. The idea is that the system, as a whole, must reach an equilibrium, where all agents get satisfied with the obtained results. This means that the values of the state/actions pairs match the reward obtained by each agent. This dynamical way of setting the values for states and/or actions makes this new reinforcement learning paradigm the first to include, naturally, the fact that the presence of other agents in the environment turns it a dynamical model. As a direct result, we implicitly include the internal state, the actions and the rewards obtained by all the other agents in the internal state of each agent. This makes our proposal the first complete solution to the conceptual problem that rises when applying reinforcement learning in multi-agent systems, which is caused by the difference existent between the environment and agent models. With basis on the proposed model, we create the IVQ-learning algorithm that is exhaustive tested in repetitive games with two, three and four agents and in stochastic games that need cooperation and in games that need collaboration. This algorithm shows to be a good option for obtaining solutions that guarantee convergence to the Nash optimum equilibrium in cooperative problems. Experiments performed clear shows that the proposed paradigm is theoretical and experimentally superior to the traditional approaches. Yet, with the creation of this new paradigm the set of reinforcement learning applications in MAS grows up. That is, besides the possibility of applying the algorithm in traditional learning problems in MAS, as for example coordination of tasks in multi-robot systems, it is possible to apply reinforcement learning in problems that are essentially collaborative

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[ES] En este trabajo se expone una metodología para modelar un sistema Multi-Agente (SMA), para que sea equivalente a un sistema de Ecuaciones Diferenciales Ordinarias (EDO), mediante un esquema basado en el método de Monte Carlo. Se muestra que el SMA puede describir con mayor riqueza modelos de sistemas dinámicos con variables cuantificadas discretas. Estos sistemas son muy acordes con los sistemas biológicos y fisiológicos, como el modelado de poblaciones o el modelado de enfermedades epidemiológicas, que en su mayoría se modelan con ecuaciones diferenciales. Los autores piensan que las ecuaciones diferenciales no son lo suficientemente apropiadas para modelar este tipo de problemas y proponen que se modelen con una técnica basada en agentes. Se plantea un caso basado en un modelo matemático de Leucemia Mieloide Crónica (LMC) que se transforma en un SMA equivalente. Se realiza una simulación de los dos modelos (SMA y EDO) y se compara los resultados obtenidos.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La importancia del suelo radica en las numerosas funciones que desempeña, tanto ambientales como socio-económicas y culturales. El suelo es el fundamento del sistema alimentario, la base de la agricultura y el medio en el que crecen casi todas las plantas destinadas a la producción de alimento, es un recurso prácticamente no renovable y es un medio vivo con gran biodiversidad cuya actividad biológica contribuye a determinar la estructura y fertilidad, y resulta ser fundamental para que este pueda realizar algunas de sus funciones. La incorporación al suelo de agentes contaminantes químicos o abióticos por encima de su capacidad de amortiguación supone su contaminación y en consecuencia la contaminación de las aguas subterráneas y/o superficiales. La presencia en el suelo de elementos tóxicos puede suponer un riesgo para la salud humana y/o los ecosistemas La presencia de medicamentos en el medio ambiente se ha convertido en un tema muy actual de investigación. Las técnicas cromatográficas actuales permiten alcanzar límites de detección analítica, en rangos comprendidos entre ng/l a μg/l, lo que ha permitido cuantificar un gran número de principios activos de uso farmacológico y excipientes en el medio ambiente, obligando a la comunidad científica a considerar este tipo de contaminación como un potencial problema que merece su atención. Hoy en día, se conoce, su amplia difusión a bajas concentraciones principalmente en el medio ambiente acuático. Tales concentraciones se han detectado en los compartimentos acuáticos, tales como los influentes y efluentes de plantas depuradoras de aguas residuales (EDAR), las aguas superficiales (ríos, lagos, arroyos, y estuarios, entre otros), el agua de mar, las aguas subterráneas y el agua potable...

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia de Redes de Comunicação e Multimédia

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Equipment maintenance is the major cost factor in industrial plants, it is very important the development of fault predict techniques. Three-phase induction motors are key electrical equipments used in industrial applications mainly because presents low cost and large robustness, however, it isn t protected from other fault types such as shorted winding and broken bars. Several acquisition ways, processing and signal analysis are applied to improve its diagnosis. More efficient techniques use current sensors and its signature analysis. In this dissertation, starting of these sensors, it is to make signal analysis through Park s vector that provides a good visualization capability. Faults data acquisition is an arduous task; in this way, it is developed a methodology for data base construction. Park s transformer is applied into stationary reference for machine modeling of the machine s differential equations solution. Faults detection needs a detailed analysis of variables and its influences that becomes the diagnosis more complex. The tasks of pattern recognition allow that systems are automatically generated, based in patterns and data concepts, in the majority cases undetectable for specialists, helping decision tasks. Classifiers algorithms with diverse learning paradigms: k-Neighborhood, Neural Networks, Decision Trees and Naïves Bayes are used to patterns recognition of machines faults. Multi-classifier systems are used to improve classification errors. It inspected the algorithms homogeneous: Bagging and Boosting and heterogeneous: Vote, Stacking and Stacking C. Results present the effectiveness of constructed model to faults modeling, such as the possibility of using multi-classifiers algorithm on faults classification

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although some individual techniques of supervised Machine Learning (ML), also known as classifiers, or algorithms of classification, to supply solutions that, most of the time, are considered efficient, have experimental results gotten with the use of large sets of pattern and/or that they have a expressive amount of irrelevant data or incomplete characteristic, that show a decrease in the efficiency of the precision of these techniques. In other words, such techniques can t do an recognition of patterns of an efficient form in complex problems. With the intention to get better performance and efficiency of these ML techniques, were thought about the idea to using some types of LM algorithms work jointly, thus origin to the term Multi-Classifier System (MCS). The MCS s presents, as component, different of LM algorithms, called of base classifiers, and realized a combination of results gotten for these algorithms to reach the final result. So that the MCS has a better performance that the base classifiers, the results gotten for each base classifier must present an certain diversity, in other words, a difference between the results gotten for each classifier that compose the system. It can be said that it does not make signification to have MCS s whose base classifiers have identical answers to the sames patterns. Although the MCS s present better results that the individually systems, has always the search to improve the results gotten for this type of system. Aim at this improvement and a better consistency in the results, as well as a larger diversity of the classifiers of a MCS, comes being recently searched methodologies that present as characteristic the use of weights, or confidence values. These weights can describe the importance that certain classifier supplied when associating with each pattern to a determined class. These weights still are used, in associate with the exits of the classifiers, during the process of recognition (use) of the MCS s. Exist different ways of calculating these weights and can be divided in two categories: the static weights and the dynamic weights. The first category of weights is characterizes for not having the modification of its values during the classification process, different it occurs with the second category, where the values suffers modifications during the classification process. In this work an analysis will be made to verify if the use of the weights, statics as much as dynamics, they can increase the perfomance of the MCS s in comparison with the individually systems. Moreover, will be made an analysis in the diversity gotten for the MCS s, for this mode verify if it has some relation between the use of the weights in the MCS s with different levels of diversity

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, we propose a multi agent system for digital image steganalysis, based on the poliginic bees model. Such approach aims to solve the problem of automatic steganalysis for digital media, with a case study on digital images. The system architecture was designed not only to detect if a file is suspicious of covering a hidden message, as well to extract the hidden message or information regarding it. Several experiments were performed whose results confirm a substantial enhancement (from 67% to 82% success rate) by using the multi-agent approach, fact not observed in traditional systems. An ongoing application using the technique is the detection of anomalies in digital data produced by sensors that capture brain emissions in little animals. The detection of such anomalies can be used to prove theories and evidences of imagery completion during sleep provided by the brain in visual cortex areas

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Programa de doctorado: Ingeniería de Telecomunicación Avanzada

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The advent of the Internet stimulated the appearance of several services. An example is the communication ones present in the users day-by-day. Services as chat and e-mail reach an increasing number of users. This fact is turning the Net a powerful communication medium. The following work explores the use of communication conventional services into the Net infrastructure. We introduce the concept of communication social protocols applied to a shared virtual environment. We argue that communication tools have to be adapted to the Internet potentialities. To do that, we approach some theories of the Communication area and its applicability in a virtual environment context. We define multi-agent architecture to support the offer of these services, as well as, a software and hardware platform to support the accomplishment of experiments using Mixed Reality. Finally, we present the obtained results, experiments and products

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La creciente complejidad, heterogeneidad y dinamismo inherente a las redes de telecomunicaciones, los sistemas distribuidos y los servicios avanzados de información y comunicación emergentes, así como el incremento de su criticidad e importancia estratégica, requieren la adopción de tecnologías cada vez más sofisticadas para su gestión, su coordinación y su integración por parte de los operadores de red, los proveedores de servicio y las empresas, como usuarios finales de los mismos, con el fin de garantizar niveles adecuados de funcionalidad, rendimiento y fiabilidad. Las estrategias de gestión adoptadas tradicionalmente adolecen de seguir modelos excesivamente estáticos y centralizados, con un elevado componente de supervisión y difícilmente escalables. La acuciante necesidad por flexibilizar esta gestión y hacerla a la vez más escalable y robusta, ha provocado en los últimos años un considerable interés por desarrollar nuevos paradigmas basados en modelos jerárquicos y distribuidos, como evolución natural de los primeros modelos jerárquicos débilmente distribuidos que sucedieron al paradigma centralizado. Se crean así nuevos modelos como son los basados en Gestión por Delegación, en el paradigma de código móvil, en las tecnologías de objetos distribuidos y en los servicios web. Estas alternativas se han mostrado enormemente robustas, flexibles y escalables frente a las estrategias tradicionales de gestión, pero continúan sin resolver aún muchos problemas. Las líneas actuales de investigación parten del hecho de que muchos problemas de robustez, escalabilidad y flexibilidad continúan sin ser resueltos por el paradigma jerárquico-distribuido, y abogan por la migración hacia un paradigma cooperativo fuertemente distribuido. Estas líneas tienen su germen en la Inteligencia Artificial Distribuida (DAI) y, más concretamente, en el paradigma de agentes autónomos y en los Sistemas Multi-agente (MAS). Todas ellas se perfilan en torno a un conjunto de objetivos que pueden resumirse en alcanzar un mayor grado de autonomía en la funcionalidad de la gestión y una mayor capacidad de autoconfiguración que resuelva los problemas de escalabilidad y la necesidad de supervisión presentes en los sistemas actuales, evolucionar hacia técnicas de control fuertemente distribuido y cooperativo guiado por la meta y dotar de una mayor riqueza semántica a los modelos de información. Cada vez más investigadores están empezando a utilizar agentes para la gestión de redes y sistemas distribuidos. Sin embargo, los límites establecidos en sus trabajos entre agentes móviles (que siguen el paradigma de código móvil) y agentes autónomos (que realmente siguen el paradigma cooperativo) resultan difusos. Muchos de estos trabajos se centran en la utilización de agentes móviles, lo cual, al igual que ocurría con las técnicas de código móvil comentadas anteriormente, les permite dotar de un mayor componente dinámico al concepto tradicional de Gestión por Delegación. Con ello se consigue flexibilizar la gestión, distribuir la lógica de gestión cerca de los datos y distribuir el control. Sin embargo se permanece en el paradigma jerárquico distribuido. Si bien continúa sin definirse aún una arquitectura de gestión fiel al paradigma cooperativo fuertemente distribuido, estas líneas de investigación han puesto de manifiesto serios problemas de adecuación en los modelos de información, comunicación y organizativo de las arquitecturas de gestión existentes. En este contexto, la tesis presenta un modelo de arquitectura para gestión holónica de sistemas y servicios distribuidos mediante sociedades de agentes autónomos, cuyos objetivos fundamentales son el incremento del grado de automatización asociado a las tareas de gestión, el aumento de la escalabilidad de las soluciones de gestión, soporte para delegación tanto por dominios como por macro-tareas, y un alto grado de interoperabilidad en entornos abiertos. A partir de estos objetivos se ha desarrollado un modelo de información formal de tipo semántico, basado en lógica descriptiva que permite un mayor grado de automatización en la gestión en base a la utilización de agentes autónomos racionales, capaces de razonar, inferir e integrar de forma dinámica conocimiento y servicios conceptualizados mediante el modelo CIM y formalizados a nivel semántico mediante lógica descriptiva. El modelo de información incluye además un “mapping” a nivel de meta-modelo de CIM al lenguaje de especificación de ontologías OWL, que supone un significativo avance en el área de la representación y el intercambio basado en XML de modelos y meta-información. A nivel de interacción, el modelo aporta un lenguaje de especificación formal de conversaciones entre agentes basado en la teoría de actos ilocucionales y aporta una semántica operacional para dicho lenguaje que facilita la labor de verificación de propiedades formales asociadas al protocolo de interacción. Se ha desarrollado también un modelo de organización holónico y orientado a roles cuyas principales características están alineadas con las demandadas por los servicios distribuidos emergentes e incluyen la ausencia de control central, capacidades de reestructuración dinámica, capacidades de cooperación, y facilidades de adaptación a diferentes culturas organizativas. El modelo incluye un submodelo normativo adecuado al carácter autónomo de los holones de gestión y basado en las lógicas modales deontológica y de acción.---ABSTRACT---The growing complexity, heterogeneity and dynamism inherent in telecommunications networks, distributed systems and the emerging advanced information and communication services, as well as their increased criticality and strategic importance, calls for the adoption of increasingly more sophisticated technologies for their management, coordination and integration by network operators, service providers and end-user companies to assure adequate levels of functionality, performance and reliability. The management strategies adopted traditionally follow models that are too static and centralised, have a high supervision component and are difficult to scale. The pressing need to flexibilise management and, at the same time, make it more scalable and robust recently led to a lot of interest in developing new paradigms based on hierarchical and distributed models, as a natural evolution from the first weakly distributed hierarchical models that succeeded the centralised paradigm. Thus new models based on management by delegation, the mobile code paradigm, distributed objects and web services came into being. These alternatives have turned out to be enormously robust, flexible and scalable as compared with the traditional management strategies. However, many problems still remain to be solved. Current research lines assume that the distributed hierarchical paradigm has as yet failed to solve many of the problems related to robustness, scalability and flexibility and advocate migration towards a strongly distributed cooperative paradigm. These lines of research were spawned by Distributed Artificial Intelligence (DAI) and, specifically, the autonomous agent paradigm and Multi-Agent Systems (MAS). They all revolve around a series of objectives, which can be summarised as achieving greater management functionality autonomy and a greater self-configuration capability, which solves the problems of scalability and the need for supervision that plague current systems, evolving towards strongly distributed and goal-driven cooperative control techniques and semantically enhancing information models. More and more researchers are starting to use agents for network and distributed systems management. However, the boundaries established in their work between mobile agents (that follow the mobile code paradigm) and autonomous agents (that really follow the cooperative paradigm) are fuzzy. Many of these approximations focus on the use of mobile agents, which, as was the case with the above-mentioned mobile code techniques, means that they can inject more dynamism into the traditional concept of management by delegation. Accordingly, they are able to flexibilise management, distribute management logic about data and distribute control. However, they remain within the distributed hierarchical paradigm. While a management architecture faithful to the strongly distributed cooperative paradigm has yet to be defined, these lines of research have revealed that the information, communication and organisation models of existing management architectures are far from adequate. In this context, this dissertation presents an architectural model for the holonic management of distributed systems and services through autonomous agent societies. The main objectives of this model are to raise the level of management task automation, increase the scalability of management solutions, provide support for delegation by both domains and macro-tasks and achieve a high level of interoperability in open environments. Bearing in mind these objectives, a descriptive logic-based formal semantic information model has been developed, which increases management automation by using rational autonomous agents capable of reasoning, inferring and dynamically integrating knowledge and services conceptualised by means of the CIM model and formalised at the semantic level by means of descriptive logic. The information model also includes a mapping, at the CIM metamodel level, to the OWL ontology specification language, which amounts to a significant advance in the field of XML-based model and metainformation representation and exchange. At the interaction level, the model introduces a formal specification language (ACSL) of conversations between agents based on speech act theory and contributes an operational semantics for this language that eases the task of verifying formal properties associated with the interaction protocol. A role-oriented holonic organisational model has also been developed, whose main features meet the requirements demanded by emerging distributed services, including no centralised control, dynamic restructuring capabilities, cooperative skills and facilities for adaptation to different organisational cultures. The model includes a normative submodel adapted to management holon autonomy and based on the deontic and action modal logics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trabalho final de Mestrado para obtenção do grau de Mestre em Engenharia de Redes de Comunicação e Multimédia

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La tesis propone un marco de trabajo para el soporte de la toma de decisiones adecuado para soportar la ejecución distribuida de acciones cooperativas en entornos multi-agente dinámicos y complejos. Soporte para la toma de decisiones es un proceso que intenta mejorar la ejecución de la toma de decisiones en escenarios cooperativos. Este proceso ocurre continuamente en la vida diaria. Los humanos, por ejemplo, deben tomar decisiones acerca de que ropa usar, que comida comer, etc. En este sentido, un agente es definido como cualquier cosa que está situada en un entorno y que actúa, basado en su observación, su interpretación y su conocimiento acerca de su situación en tal entorno para lograr una acción en particular.Por lo tanto, para tomar decisiones, los agentes deben considerar el conocimiento que les permita ser consientes en que acciones pueden o no ejecutar. Aquí, tal proceso toma en cuenta tres parámetros de información con la intención de personificar a un agente en un entorno típicamente físico. Así, el mencionado conjunto de información es conocido como ejes de decisión, los cuales deben ser tomados por los agentes para decidir si pueden ejecutar correctamente una tarea propuesta por otro agente o humano. Los agentes, por lo tanto, pueden hacer mejores decisiones considerando y representando apropiadamente tal información. Los ejes de decisión, principalmente basados en: las condiciones ambientales, el conocimiento físico y el valor de confianza del agente, provee a los sistemas multi-agente un confiable razonamiento para alcanzar un factible y exitoso rendimiento cooperativo.Actualmente, muchos investigadores tienden a generar nuevos avances en la tecnología agente para incrementar la inteligencia, autonomía, comunicación y auto-adaptación en escenarios agentes típicamente abierto y distribuidos. En este sentido, esta investigación intenta contribuir en el desarrollo de un nuevo método que impacte tanto en las decisiones individuales como colectivas de los sistemas multi-agente. Por lo tanto, el marco de trabajo propuesto ha sido utilizado para implementar las acciones concretas involucradas en el campo de pruebas del fútbol robótico. Este campo emula los juegos de fútbol real, donde los agentes deben coordinarse, interactuar y cooperar entre ellos para solucionar tareas complejas dentro de un escenario dinámicamente cambiante y competitivo, tanto para manejar el diseño de los requerimientos involucrados en las tareas como para demostrar su efectividad en trabajos colectivos. Es así que los resultados obtenidos tanto en el simulador como en el campo real de experimentación, muestran que el marco de trabajo para el soporte de decisiones propuesto para agentes situados es capaz de mejorar la interacción y la comunicación, reflejando en un adecuad y confiable trabajo en equipo dentro de entornos impredecibles, dinámicos y competitivos. Además, los experimentos y resultados también muestran que la información seleccionada para generar los ejes de decisión para situar a los agentes, es útil cuando tales agentes deben ejecutar una acción o hacer un compromiso en cada momento con la intención de cumplir exitosamente un objetivo colectivo. Finalmente, algunas conclusiones enfatizando las ventajas y utilidades del trabajo propuesto en la mejora del rendimiento colectivo de los sistemas multi-agente en situaciones tales como tareas coordinadas y asignación de tareas son presentadas.