12 resultados para Sinkhole
Resumo:
Generally wireless sensor networks rely of many-to-one communication approach for data gathering. This approach is extremely susceptible to sinkhole attack, where an intruder attracts surrounding nodes with unfaithful routing information, and subsequently presents selective forwarding or change the data that carry through it. A sinkhole attack causes an important threat to sensor networks and it should be considered that the sensor nodes are mostly spread out in open areas and of weak computation and battery power. In order to detect the intruder in a sinkhole attack this paper suggests an algorithm which firstly finds a group of suspected nodes by analyzing the consistency of data. Then, the intruder is recognized efficiently in the group by checking the network flow information. The proposed algorithm's performance has been evaluated by using numerical analysis and simulations. Therefore, accuracy and efficiency of algorithm would be verified.
Resumo:
Pits have been observed on many cometary nuclei mapped by spacecraft(1-4). It has been argued that cometary pits are a signature of endogenic activity, rather than impact craters such as those on planetary and asteroid surfaces. Impact experiments(5,6) andmodels(7,8) cannot reproduce the shapes of most of the observed cometary pits, and the predicted collision rates imply that few of the pits are related to impacts(8,9). Alternative mechanisms like explosive activity(10) have been suggested, but the driving process remains unknown. Here we report that pits on comet 67P/Churyumov-Gerasimenko are active, and probably created by a sinkhole process, possibly accompanied by outbursts. We argue that after formation, pits expand slowly in diameter, owing to sublimation-driven retreat of the walls. Therefore, pits characterize how eroded the surface is: a fresh cometary surface will have a ragged structure with many pits, while an evolved surface will look smoother. The size and spatial distribution of pits imply that large heterogeneities exist in the physical, structural or compositional properties of the first few hundred metres below the current nucleus surface.
Resumo:
"Examines a karst/cave area in southwestern Illinois bordering the Mississippi River ... designated a state Resource Rich Area."--P. iii.
Resumo:
"June, 1980."
Resumo:
"A project of the Critical Trends Assessment Program."
Resumo:
Despite lake sensitivity to climate change, few Florida paleolimnological studies have focused on changes in hydrology. Evidence from Florida vegetation histories raise questions about long-term hydrologic history of Florida lakes, and a 25-year limnological dataset revealed recent climate-driven effects on Lake Annie. The objectives of this research are (1) to use modern diatom assemblages to develop methods for reconstruction of climatic and anthropogenic change (2) to reconstruct both long-term and recent histories of Lake Annie using diatom microfossils. Paleoenvironmental reconstruction models were developed from diatom assemblages of various habitat types from modern lakes. Plankton and sediment assemblages were similar, but epiphytes were distinct, suggesting differences in sediment delivery from different parts of the lakes. Relationships between a variety of physical and chemical data and the diatoms from each habitat type were explored. Total phosphorus (TP), pH, and color were found to be the most relevant variables for reconstruction, with sediment and epiphyte assemblages having the strongest relationships to those variables, six calibration models were constructed from the combination of these habitat types and environmental variables. Reconstructions utilizing the weighted averaging models in this study may be used to directly reveal TP, color, and pH changes from a sediment record, which might be suggestive of hydrologic change as well. These variables were reconstructed from the diatom record from both a long-term (11,000 year) and short-term (100 year) record and showed an interaction between climate-driven and local land-use impacts on Lake Annie. The long-term record begins with Lake Annie as a wetland, then the lake filled to a high stand around 4000 years ago. A period of relative stability after that point was interrupted near the turn of the last century by subtle changes in diatom communities that indicate acidification. Abrupt changes in the diatom communities around 1970 AD suggest recovery from acidification, but concurrent hydrologic change intensified anthropogenic effects on the lake. Diatom evidence for alkalization and phosphorus loading correspond to changes seen in the limnological record.
Resumo:
Despite their sensitivity to climate variability, few of the abundant sinkhole lakes of Florida have been the subject of paleolimnological studies to discern patterns of change in aquatic communities and link them to climate drivers. However, deep sinkhole lakes can contain highly resolved paleolimnological records that can be used to track long-term climate variability and its interaction with effects of land-use change. In order to understand how limnological changes were regulated by regional climate variability and further modified by local land-use change in south Florida, we explored diatom assemblage variability over centennial and semi-decadal time scales in an ~11,000-yr and a ~150-yr sediment core extracted from a 21-m deep sinkhole lake, Lake Annie, on the protected property of Archbold Biological Station. We linked variance in diatom assemblage structure to changes in water total phosphorus, color, and pH using diatom-based transfer functions. Reconstructions suggest the sinkhole depression contained a small, acidic, oligotrophic pond ~11000–7000 cal yr BP that gradually deepened to form a humic lake by ~4000 cal yr BP, coinciding with the onset of modern precipitation regimes and the stabilization of sea-level indicated by corresponding palynological records. The lake then contained stable, acidophilous planktonic and benthic algal communities for several thousand years. In the early AD 1900s, that community shifted to one diagnostic of an even lower pH (~5.6), likely resulting from acid precipitation. Further transitions over the past 25 yr reflect recovery from acidification and intensified sensitivity to climate variability caused by enhanced watershed runoff from small drainage ditches dug during the mid-twentieth Century on the surrounding property.
Resumo:
We noninvasively detected the characteristics and location of a regional fault in an area of poor bedrock exposure complicated by karst weathering features in the subsurface. Because this regional fault is associated with sinkhole formation, its location is important for hazard avoidance. The bedrock lithologies on either side of the fault trace are similar; hence, we chose an approach that capitalized on the complementary strengths of very low frequency (VLF) electromagnetic, resistivity, and gravity methods. VLF proved most useful as a first-order reconnaissance tool, allowing us to define a narrow target area for further geophysical exploration. Fault-related epikarst was delineated using resistivity. Ultimately, a high-resolution gravity survey and subsequent inverse modeling using the results of the resistivity survey helped to further constrain the location and approximate orientation of the fault. The combined results indicated that the location of the fault trace needed to be adjusted 53 m south of the current published location and was consistent with a north-dipping thrust fault. Additionally, a gravity low south of the fault trace agreed with the location of conductive material from the resistivity and VLF surveys. We interpreted these anomalies to represent enhanced epikarst in the fault footwall. We clearly found that a staged approach involving a progression of methods beginning with a reconnaissance VLF survey, followed by high-resolution gravity and electrical resistivity surveys, can be used to characterize a fault and fault-related karst in an area of poor bedrock surface exposure.
Resumo:
Five seismic units may be identified in the similar to 8 m thick Holocene sediment package at the bottom of the Blue Hole, a 120 m deep sinkhole located in the atoll lagoon of Lighthouse Reef, Belize. These units may be correlated with the succession of an existing 5.85-m-long sediment core that reaches back to 1385 kyrs BP. The identification of seismic units is based on the fact that uniform, fine-grained background sediments show weak reflections while alternating background and coarser-grained event (storm) beds exhibit strong reflections in the seismic profiles. The main source of sediments is the marginal atoll reef and adjacent lagoon area to the east and north. Northeasterly winds and storms transport sediment into the Blue Hole, as seen in the eastward increase in sediment thickness, i.e., the eastward shallowing of the Blue Hole. Previous assumptions of much thicker Holocene sediment packages in the Blue Hole could not be confirmed. So far, close to 6-m-long cores were retrieved from the Blue Hole but the base of the sedimentary succession remains to be recovered. The nature of the basal sediments is unknown but mid-Holocene and possibly older, Pleistocene sinkhole deposits can be expected. The number of event beds identified in the Blue Hole (n = 37) during a 1.385 kyr-long period and the number of cyclones listed in historical databases suggest that only strong hurricanes (categories 4 and 5) left event beds in the Blue Hole sedimentary succession. Storm beds are numerous during 13-0.9 kyrs BP and 0.8-0.5 kyrs BP.
Resumo:
Lake Annie is a small (37 ha), relatively deep (21 m) sinkhole lake on the Lake Wales Ridge (LWR) of central Florida with a long history of study, including monthly limnological monitoring since June, 1983. The record shows high variability in Secchi disc transparency, which ranged from < 1 to 15 m with a trend toward decreasing values over the latter decade of record. We examined available regional meteorological, groundwater and limnological data to determine the drivers and thermal consequences of variability in water transparency. While total nutrient concentrations and chlorophyll-a were highest during years of low transparency, stepwise regression showed that none of these had a signifi cant effect on transparency after water color was taken into account. Repeated years of high precipitation between 1993–2005 caused an increase in water table height, increasing the transport of dissolved substances from the vegetated watershed into the lake. Groundwater stage explained 73 % of the interannual variability in water transparency. Transparency, in turn, explained 85 % of the interannual variability in the heat budget for the lake, which ranged from 1.8 × 108 to 4.1 × 108 Joules m–2 yr–1, encompassing the range reported across Florida lakes. While surface water temperature was not affected by transparency, depths below 5 m warmed faster during the stratifi ed period during years having a lower rate of light extinction. We show that an increase in precipitation of 20 cm per year reduces the depth of the summer euphotic zone and thermocline by 1.9 and 1.6 m, respectively, and causes a 1-month reduction in the duration of winter mixing in this monomictic lake. Because biota have been shown to respond to shifts in light and heat distribution of much smaller magnitude than exhibited here, our work suggests that subtle changes in precipitation linked to climate fl uctuations may have signifi cant physical as well as biotic consequences.
Resumo:
Airborne LIDAR (Light Detecting and Ranging) is a relatively new technique that rapidly and accurately measures micro-topographic features. This study compares topography derived from LIDAR with subsurface karst structures mapped in 3-dimensions with ground penetrating radar (GPR). Over 500 km of LIDAR data were collected in 1995 by the NASA ATM instrument. The LIDAR data was processed and analyzed to identify closed depressions. A GPR survey was then conducted at a 200 by 600 m site to determine if the target features are associated with buried karst structures. The GPR survey resolved two major depressions in the top of a clay rich layer at ~10m depth. These features are interpreted as buried dolines and are associated spatially with subtle (< 1m) trough-like depressions in the topography resolved from the LIDAR data. This suggests that airborne LIDAR may be a useful tool for indirectly detecting subsurface features associated with sinkhole hazard.
Resumo:
An investigation into karst hazard in southern Ontario has been undertaken with the intention of leading to the development of predictive karst models for this region. The reason these are not currently feasible is a lack of sufficient karst data, though this is not entirely due to the lack of karst features. Geophysical data was collected at Lake on the Mountain, Ontario as part of this karst investigation. This data was collected in order to validate the long-standing hypothesis that Lake on the Mountain was formed from a sinkhole collapse. Sub-bottom acoustic profiling data was collected in order to image the lake bottom sediments and bedrock. Vertical bedrock features interpreted as solutionally enlarged fractures were taken as evidence for karst processes on the lake bottom. Additionally, the bedrock topography shows a narrower and more elongated basin than was previously identified, and this also lies parallel to a mapped fault system in the area. This suggests that Lake on the Mountain was formed over a fault zone which also supports the sinkhole hypothesis as it would provide groundwater pathways for karst dissolution to occur. Previous sediment cores suggest that Lake on the Mountain would have formed at some point during the Wisconsinan glaciation with glacial meltwater and glacial loading as potential contributing factors to sinkhole development. A probabilistic karst model for the state of Kentucky, USA, has been generated using the Weights of Evidence method. This model is presented as an example of the predictive capabilities of these kind of data-driven modelling techniques and to show how such models could be applied to karst in Ontario. The model was able to classify 70% of the validation dataset correctly while minimizing false positive identifications. This is moderately successful and could stand to be improved. Finally, suggestions to improving the current karst model of southern Ontario are suggested with the goal of increasing investigation into karst in Ontario and streamlining the reporting system for sinkholes, caves, and other karst features so as to improve the current Ontario karst database.