904 resultados para Single-process Models
Resumo:
Quantifying mass and energy exchanges within tropical forests is essential for understanding their role in the global carbon budget and how they will respond to perturbations in climate. This study reviews ecosystem process models designed to predict the growth and productivity of temperate and tropical forest ecosystems. Temperate forest models were included because of the minimal number of tropical forest models. The review provides a multiscale assessment enabling potential users to select a model suited to the scale and type of information they require in tropical forests. Process models are reviewed in relation to their input and output parameters, minimum spatial and temporal units of operation, maximum spatial extent and time period of application for each organization level of modelling. Organizational levels included leaf-tree, plot-stand, regional and ecosystem levels, with model complexity decreasing as the time-step and spatial extent of model operation increases. All ecosystem models are simplified versions of reality and are typically aspatial. Remotely sensed data sets and derived products may be used to initialize, drive and validate ecosystem process models. At the simplest level, remotely sensed data are used to delimit location, extent and changes over time of vegetation communities. At a more advanced level, remotely sensed data products have been used to estimate key structural and biophysical properties associated with ecosystem processes in tropical and temperate forests. Combining ecological models and image data enables the development of carbon accounting systems that will contribute to understanding greenhouse gas budgets at biome and global scales.
Resumo:
An important consideration in the development of mathematical models for dynamic simulation, is the identification of the appropriate mathematical structure. By building models with an efficient structure which is devoid of redundancy, it is possible to create simple, accurate and functional models. This leads not only to efficient simulation, but to a deeper understanding of the important dynamic relationships within the process. In this paper, a method is proposed for systematic model development for startup and shutdown simulation which is based on the identification of the essential process structure. The key tool in this analysis is the method of nonlinear perturbations for structural identification and model reduction. Starting from a detailed mathematical process description both singular and regular structural perturbations are detected. These techniques are then used to give insight into the system structure and where appropriate to eliminate superfluous model equations or reduce them to other forms. This process retains the ability to interpret the reduced order model in terms of the physico-chemical phenomena. Using this model reduction technique it is possible to attribute observable dynamics to particular unit operations within the process. This relationship then highlights the unit operations which must be accurately modelled in order to develop a robust plant model. The technique generates detailed insight into the dynamic structure of the models providing a basis for system re-design and dynamic analysis. The technique is illustrated on the modelling for an evaporator startup. Copyright (C) 1996 Elsevier Science Ltd
Resumo:
Density-dependent effects, both positive or negative, can have an important impact on the population dynamics of species by modifying their population per-capita growth rates. An important type of such density-dependent factors is given by the so-called Allee effects, widely studied in theoretical and field population biology. In this study, we analyze two discrete single population models with overcompensating density-dependence and Allee effects due to predator saturation and mating limitation using symbolic dynamics theory. We focus on the scenarios of persistence and bistability, in which the species dynamics can be chaotic. For the chaotic regimes, we compute the topological entropy as well as the Lyapunov exponent under ecological key parameters and different initial conditions. We also provide co-dimension two bifurcation diagrams for both systems computing the periods of the orbits, also characterizing the period-ordering routes toward the boundary crisis responsible for species extinction via transient chaos. Our results show that the topological entropy increases as we approach to the parametric regions involving transient chaos, being maximum when the full shift R(L)(infinity) occurs, and the system enters into the essential extinction regime. Finally, we characterize analytically, using a complex variable approach, and numerically the inverse square-root scaling law arising in the vicinity of a saddle-node bifurcation responsible for the extinction scenario in the two studied models. The results are discussed in the context of species fragility under differential Allee effects. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
This presentation describes the evolution of SDLCs from the first formally proposed linear models including, the Waterfall (Royce 1970) through to iterative prototyping models (Spiral and Win-Win Spiral) and incremental, iterative models used in Agile Methods. We discuss the problems iinherent in ech prpoosal and how successive models attempt to solve them.
Resumo:
This presentation describes the evolution of Software Development Lifecycles (SDLCs) from the first formally proposed linear models including, the Waterfall (Royce 1970) through to iterative prototyping models (Spiral and Win-Win Spiral) and incremental, iterative models used in Agile Methods. We discuss the problems iinherent in each prpoosal and how successive models attempt to solve them.
Resumo:
The role of convective processes in moistening the atmosphere during suppressed periods of the suppressed phase of a Madden-Julian oscillation is investigated in cloud-resolving model (CRM) simulations, and the impact of moistening on the subsequent evolution of convection is assessed as part of a Global Energy and Water Cycle Experiment Cloud System Study (GCSS) intercomparison project. The ability of single-column model (SCM) versions of a number of state-of-the-art climate and numerical weather prediction models to capture these convective processes is also evaluated. During the suppressed periods, the CRMs are found to simulate a maximum moistening around 3 km, which is associated with a predominance of shallow convection. All SCMs produce adequate amounts of shallow convection during the suppressed periods, comparable to that seen in CRMs, but the relatively drier SCMs have higher precipitation rates than the relatively wetter SCMs and CRMs. The relatively drier SCMs dry, rather than moisten, the lower troposphere below the melting level. During the transition periods, convective processes act to moisten the atmosphere above the level at which mean advection changes from moistening to drying, despite an overall drying effect for the column. The SCMs capture some essence of this moistening at upper levels. A gradual transition from shallow to deep convection is simulated by the CRMs and the wetter SCMs during the transition periods, but the onset of deep convection is delayed in the drier SCMs. This results in lower precipitation rates for these SCMs during the active periods, although much better agreement exists between the models at this time.
Resumo:
This paper presents single-column model (SCM) simulations of a tropical squall-line case observed during the Coupled Ocean-Atmosphere Response Experiment of the Tropical Ocean/Global Atmosphere Programme. This case-study was part of an international model intercomparison project organized by Working Group 4 ‘Precipitating Convective Cloud Systems’ of the GEWEX (Global Energy and Water-cycle Experiment) Cloud System Study. Eight SCM groups using different deep-convection parametrizations participated in this project. The SCMs were forced by temperature and moisture tendencies that had been computed from a reference cloud-resolving model (CRM) simulation using open boundary conditions. The comparison of the SCM results with the reference CRM simulation provided insight into the ability of current convection and cloud schemes to represent organized convection. The CRM results enabled a detailed evaluation of the SCMs in terms of the thermodynamic structure and the convective mass flux of the system, the latter being closely related to the surface convective precipitation. It is shown that the SCMs could reproduce reasonably well the time evolution of the surface convective and stratiform precipitation, the convective mass flux, and the thermodynamic structure of the squall-line system. The thermodynamic structure simulated by the SCMs depended on how the models partitioned the precipitation between convective and stratiform. However, structural differences persisted in the thermodynamic profiles simulated by the SCMs and the CRM. These differences could be attributed to the fact that the total mass flux used to compute the SCM forcing differed from the convective mass flux. The SCMs could not adequately represent these organized mesoscale circulations and the microphysicallradiative forcing associated with the stratiform region. This issue is generally known as the ‘scale-interaction’ problem that can only be properly addressed in fully three-dimensional simulations. Sensitivity simulations run by several groups showed that the time evolution of the surface convective precipitation was considerably smoothed when the convective closure was based on convective available potential energy instead of moisture convergence. Finally, additional SCM simulations without using a convection parametrization indicated that the impact of a convection parametrization in forced SCM runs was more visible in the moisture profiles than in the temperature profiles because convective transport was particularly important in the moisture budget.
Resumo:
Several methods based on Kriging have recently been proposed for calculating a probability of failure involving costly-to-evaluate functions. A closely related problem is to estimate the set of inputs leading to a response exceeding a given threshold. Now, estimating such a level set—and not solely its volume—and quantifying uncertainties on it are not straightforward. Here we use notions from random set theory to obtain an estimate of the level set, together with a quantification of estimation uncertainty. We give explicit formulae in the Gaussian process set-up and provide a consistency result. We then illustrate how space-filling versus adaptive design strategies may sequentially reduce level set estimation uncertainty.
Resumo:
Sound knowledge of the spatial and temporal patterns of rockfalls is fundamental for the management of this very common hazard in mountain environments. Process-based, three-dimensional simulation models are nowadays capable of reproducing the spatial distribution of rockfall occurrences with reasonable accuracy through the simulation of numerous individual trajectories on highly-resolved digital terrain models. At the same time, however, simulation models typically fail to quantify the ‘real’ frequency of rockfalls (in terms of return intervals). The analysis of impact scars on trees, in contrast, yields real rockfall frequencies, but trees may not be present at the location of interest and rare trajectories may not necessarily be captured due to the limited age of forest stands. In this article, we demonstrate that the coupling of modeling with tree-ring techniques may overcome the limitations inherent to both approaches. Based on the analysis of 64 cells (40 m × 40 m) of a rockfall slope located above a 1631-m long road section in the Swiss Alps, we illustrate results from 488 rockfalls detected in 1260 trees. We illustrate that tree impact data cannot only be used (i) to reconstruct the real frequency of rockfalls for individual cells, but that they also serve (ii) the calibration of the rockfall model Rockyfor3D, as well as (iii) the transformation of simulated trajectories into real frequencies. Calibrated simulation results are in good agreement with real rockfall frequencies and exhibit significant differences in rockfall activity between the cells (zones) along the road section. Real frequencies, expressed as rock passages per meter road section, also enable quantification and direct comparison of the hazard potential between the zones. The contribution provides an approach for hazard zoning procedures that complements traditional methods with a quantification of rockfall frequencies in terms of return intervals through a systematic inclusion of impact records in trees.
Resumo:
We present a novel surrogate model-based global optimization framework allowing a large number of function evaluations. The method, called SpLEGO, is based on a multi-scale expected improvement (EI) framework relying on both sparse and local Gaussian process (GP) models. First, a bi-objective approach relying on a global sparse GP model is used to determine potential next sampling regions. Local GP models are then constructed within each selected region. The method subsequently employs the standard expected improvement criterion to deal with the exploration-exploitation trade-off within selected local models, leading to a decision on where to perform the next function evaluation(s). The potential of our approach is demonstrated using the so-called Sparse Pseudo-input GP as a global model. The algorithm is tested on four benchmark problems, whose number of starting points ranges from 102 to 104. Our results show that SpLEGO is effective and capable of solving problems with large number of starting points, and it even provides significant advantages when compared with state-of-the-art EI algorithms.
Resumo:
Enabling Subject Matter Experts (SMEs) to formulate knowledge without the intervention of Knowledge Engineers (KEs) requires providing SMEs with methods and tools that abstract the underlying knowledge representation and allow them to focus on modeling activities. Bridging the gap between SME-authored models and their representation is challenging, especially in the case of complex knowledge types like processes, where aspects like frame management, data, and control flow need to be addressed. In this paper, we describe how SME-authored process models can be provided with an operational semantics and grounded in a knowledge representation language like F-logic in order to support process-related reasoning. The main results of this work include a formalism for process representation and a mechanism for automatically translating process diagrams into executable code following such formalism. From all the process models authored by SMEs during evaluation 82% were well-formed, all of which executed correctly. Additionally, the two optimizations applied to the code generation mechanism produced a performance improvement at reasoning time of 25% and 30% with respect to the base case, respectively.
Resumo:
An important aspect of Process Simulators for photovoltaics is prediction of defect evolution during device fabrication. Over the last twenty years, these tools have accelerated process optimization, and several Process Simulators for iron, a ubiquitous and deleterious impurity in silicon, have been developed. The diversity of these tools can make it difficult to build intuition about the physics governing iron behavior during processing. Thus, in one unified software environment and using self-consistent terminology, we combine and describe three of these Simulators. We vary structural defect distribution and iron precipitation equations to create eight distinct Models, which we then use to simulate different stages of processing. We find that the structural defect distribution influences the final interstitial iron concentration ([Fe-i]) more strongly than the iron precipitation equations. We identify two regimes of iron behavior: (1) diffusivity-limited, in which iron evolution is kinetically limited and bulk [Fe-i] predictions can vary by an order of magnitude or more, and (2) solubility-limited, in which iron evolution is near thermodynamic equilibrium and the Models yield similar results. This rigorous analysis provides new intuition that can inform Process Simulation, material, and process development, and it enables scientists and engineers to choose an appropriate level of Model complexity based on wafer type and quality, processing conditions, and available computation time.