895 resultados para Single-photon Detection


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel device for detection of single photons based on a GaAs/AlGaAs modulation doped field effect transistor (MODFET) which does not rely on avalanche processes is proposed. The optimal channel electron densities and quantum dot parameters for detection of single photons are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We demonstrate high count rate single photon detection at telecom wavelengths using a thermoelectrically-cooled semiconductor diode. Our device consists of a single InGaAs avalanche photodiode driven by a 2 GHz gating frequency signal and coupled to a tuneable self-differencing circuit for enhanced detection sensitivity. We find the count rate is linear with the photon flux in the single photon detection regime over approximately four orders of magnitude, and saturates at 1 gigacount/s at high photon fluxes. This result highlights promising potential for APDs in high bit rate quantum information applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A near-infrared single-photon detection system is established by using pigtailed InGaAs/InP avalanche photodiodes. With a 50GHz digital sampling oscilloscope, the function and process of gated-mode (Geiger-mode) single-photon detection are intuitionally demonstrated for the first time. The performance of the detector as a gated-mode single-photon counter at wavelengths of 1310 and 1550nm is investigated. At the operation temperature of 203K,a quantum efficiency of 52% with a dark count probability per gate of 2. 4 * 10~(-3), and a gate pulse repetition rate of 50kHz are obtained at 1550nm. The corresponding parameters are 43% , 8. 5 * 10~(-3), and 200kHz at 238K.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is difficult to determine sulfur-containing volatile organic compounds in the atmosphere because of their reactivity. Primary off-line techniques may suffer losses of analytes during the transportation from field to laboratory and sample preparation. In this study, a novel method was developed to directly measure dimethyl sulfide at parts-per-billion concentration levels in the atmosphere using vacuum ultraviolet single photon ionization time-of-flight mass spectrometry. This technique offers continuous sampling at a response rate of one measurement per second, or cumulative measurements over longer time periods. Laboratory prepared samples of different concentrations of dimethyl sulfide in pure nitrogen gas were analyzed at several sampling frequencies. Good precision was achieved using sampling periods of at least 60 seconds with a relative standard deviation of less than 25%. The detection limit for dimethyl sulfide was below the 3 ppb olfactory threshold. These results demonstrate that single photon ionization time-of-flight mass spectrometry is a valuable tool for rapid, real-time measurements of sulfur-containing organic compounds in the air.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is shown that a linear superposition of two macroscopically distinguishable optical coherent states can be generated using a single photon source and simple all-optical operations. Weak squeezing on a single photon, beam mixing with an auxiliary coherent state, and photon detecting with imperfect threshold detectors are enough to generate a coherent state superposition in a free propagating optical field with a large coherent amplitude (alpha>2) and high fidelity (F>0.99). In contrast to all previous schemes to generate such a state, our scheme does not need photon number resolving measurements nor Kerr-type nonlinear interactions. Furthermore, it is robust to detection inefficiency and exhibits some resilience to photon production inefficiency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of computed tomography systems with energy resolving detectors is a current challenge in medical physics and biomedical engineering. A computed tomography system of this kind allows getting complementary informations relatively to conventional systems, that can help the medical diagnosis, being of great interest in medicine. The work described in this thesis is related to the development of a computed tomography system using micropattern gaseous detectors, which allow storing, simultaneously, information about the interaction position and the energy of each single photon that interacts with the detector. This kind of detectors has other advantages concerning the cost and characteristics of operation when compared with solid state detectors. Tomographic acquisitions were performed using a MicroHole & Strip Plate based detector, which allowed reconstructing cross-sectional images using energy windows, applying the energy weighting technique and performing multi-slice and tri-dimensional reconstructions. The contrast-to-noise ratio was improved by 31% by applying the energy weighting technique, comparing with the corresponding image obtained with the current medical systems. A prototype of a computed tomography with flexibility to change the detector was developed, making it possible to apply different detectors based on Thick-COBRA. Several images acquired with these detectors are presented and demonstrate their applicability in X-ray imaging. When operating in NeCH4, the detector allowed a charge gain of 8 104, an energy resolution of 20% (full width at half maximum at 8 keV), a count rate of 1 106 Hz/mm2, a very stable operation (gain fluctuations below 5%) and a spacial resolution of 1.2 mm for an energy photon of 3.6 keV. Operating the detector in pure Kr allowed increasing the detection efficiency and achieving a charge gain of 2 104, an energy resolution of 32% (full width at half maximum at 22 keV), a count rate of 1 105 Hz/mm2, very stable operation and a spatial resolution of 500 m. The software already existing in the group was improved and tools to correct geometric misalignments of the system were also developed. The reconstructions obtained after geometrical correction are free of artefacts due to the referred misalignments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The SPECT (Single Photon Emission Computed Tomography) systems are part of a medical image acquisition technology which has been outstanding, because the resultant images are functional images complementary to those that give anatomic information, such as X-Ray CT, presenting a high diagnostic value. These equipments acquire, in a non-invasive way, images from the interior of the human body through tomographic mapping of radioactive material administered to the patient. The SPECT systems are based on the Gamma Camera detection system, and one of them being set on a rotational gantry is enough to obtain the necessary data for a tomographic image. The images obtained from the SPECT system consist in a group of flat images that describe the radioactive distribution on the patient. The trans-axial cuts are obtained from the tomographic reconstruction techniques. There are analytic and iterative methods to obtain the tomographic reconstruction. The analytic methods are based on the Fourier Cut Theorem (FCT), while the iterative methods search for numeric solutions to solve the equations from the projections. Within the analytic methods, the filtered backprojection (FBP) method maybe is the simplest of all the tomographic reconstruction techniques. This paper's goal is to present the operation of the SPECT system, the Gamma Camera detection system, some tomographic reconstruction techniques and the requisites for the implementation of this system in a Nuclear Medicine service

Relevância:

100.00% 100.00%

Publicador:

Resumo:

I will present my work about constructing and characterizing a single photon detector. Using the 1550nm laser and second harmonic light generation, I am able to count single photons on a Multi‐Pixel Photon Counter (MPPC) silicon APD. My results show that upwards of 22% quantum efficiency is achievable with the MPPC. Future work will include coincidence detection of correlated photon‐pair.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES We sought to determine whether the transmural extent of scar (TES) explains discordances between dobutamine echocardiography (DbE) and thallium single-photon emission computed tomography (Tl-SPECT) in the detection of viable myocardium (VM). BACKGROUND Discrepancies between DbE and Tl-SPECT are often attributed to differences between contractile reserve and membrane integrity, but may also reflect a disproportionate influence of nontransmural scar on thickening at DbE. METHODS Sixty patients (age 62 +/- 12 years; 10 women and 50 men) with postinfarction left ventricular dysfunction underwent standard rest-late redistribution Tl-SPECT and DbE. Viable myocardium was identified when dysfunctional segments showed Tl activity >60% on the late-redistribution image or by low-dose augmentation at DbE. Contrast-enhanced magnetic resonance imaging (ceMRI) was used to divide TES into five groups: 0%, 75% of the wall thickness replaced by scar. RESULTS As TES increased, both the mean Tl uptake and change in wall motion score decreased significantly (both p < 0.001). However, the presence of subendocardial scar was insufficient to prevent thickening; >50% of segments still showed contractile function with TES of 25% to 75%, although residual function was uncommon with TES >75%. The relationship of both tests to increasing TES was similar, but Tl-SPECT identified VM more frequently than DbE in all groups. Among segments without scar or with small amounts of scar (50% were viable by SPECT. CONCLUSIONS Both contractile reserve and perfusion are sensitive to the extent of scar. However, contractile reserve may be impaired in the face of no or minor scar, and thickening may still occur with extensive scar. (C) 2004 by the American College of Cardiology Foundation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is shown that a linear superposition of two macroscopically distinguishable optical coherent states can be generated using a single photon source and simple all-optical operations. Weak squeezing on a single photon, beam mixing with an auxiliary coherent state, and photon detecting with imperfect threshold detectors are enough to generate a coherent state superposition in a free propagating optical field with a large coherent amplitude (alpha>2) and high fidelity (F>0.99). In contrast to all previous schemes to generate such a state, our scheme does not need photon number resolving measurements nor Kerr-type nonlinear interactions. Furthermore, it is robust to detection inefficiency and exhibits some resilience to photon production inefficiency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We develop an all-optical scheme to generate superpositions of macroscopically distinguishable coherent states in traveling optical fields. It nondeterministically distills coherent-state superpositions (CSS's) with large amplitudes out of CSS's with small amplitudes using inefficient photon detection. The small CSS's required to produce CSS's with larger amplitudes are extremely well approximated by squeezed single photons. We discuss some remarkable features of this scheme: it effectively purifies mixed initial states emitted from inefficient single-photon sources and boosts negativity of Wigner functions of quantum states.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Left ventricular (LV) volumes have important prognostic implications in patients with chronic ischemic heart disease. We sought to examine the accuracy and reproducibility of real-time 3D echo (RT-3DE) compared to TI-201 single photon emission computed tomography (SPECT) and cardiac magnetic resonance imaging (MRI). Thirty (n = 30) patients (age 62±9 years, 23 men) with chronic ischemic heart disease underwent LV volume assessment with RT-3DE, SPECT, and MRI. Ano vel semi-automated border detection algorithmwas used by RT-3DE. End diastolic volumes (EDV) and end systolic volumes (ESV) measured by RT3DE and SPECT were compared to MRI as the standard of reference. RT-3DE and SPECT volumes showed excellent correlation with MRI (Table). Both RT- 3DE and SPECT underestimated LV volumes compared to MRI (ESV, SPECT 74±58 ml versus RT-3DE 95±48 ml versus MRI 96±54 ml); (EDV, SPECT 121±61 ml versus RT-3DE 169±61 ml versus MRI 179±56 ml). The degree of ESV underestimation with RT-3DE was not significant.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a plasmonic “ac Wheatstone bridge” circuit is proposed and theoretically modeled for the first time. The bridge circuit consists of three metallic nanoparticles, shaped as rectangular prisms, with two nanoparticles acting as parallel arms of a resonant circuit and the third bridging nanoparticle acting as an optical antenna providing an output signal. Polarized light excites localized surface plasmon resonances in the two arms of the circuit, which generate an optical signal dependent on the phase-sensitive excitations of surface plasmons in the antenna. The circuit is analyzed using a plasmonic coupling theory and numerical simulations. The analyses show that the plasmonic circuit is sensitive to phase shifts between the arms of the bridge and has the potential to detect the presence of single molecules.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Super-resolution imaging techniques are of paramount interest for applications in bioimaging and fluorescence microscopy. Recent advances in bioimaging demand application-tailored point spread functions. Here, we present some approaches for generating application-tailored point spread functions along with fast imaging capabilities. Aperture engineering techniques provide interesting solutions for obtaining desired system point spread functions. Specially designed spatial filters—realized by optical mask—are outlined both in a single-lens and 4Pi configuration. Applications include depth imaging, multifocal imaging, and super-resolution imaging. Such an approach is suitable for fruitful integration with most existing state-of-art imaging microscopy modalities.