957 resultados para Single electron transport


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study a single-electron transistor (SET) based upon a II–VI semiconductor quantum dot doped with a single-Mn ion. We present evidence that this system behaves like a quantum nanomagnet whose total spin and magnetic anisotropy depend dramatically both on the number of carriers and their orbital nature. Thereby, the magnetic properties of the nanomagnet can be controlled electrically. Conversely, the electrical properties of this SET depend on the quantum state of the Mn spin, giving rise to spin-dependent charging energies and hysteresis in the Coulomb blockade oscillations of the linear conductance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the effect of magnetic anisotropy in a single electron transistor with ferromagnetic electrodes and a non-magnetic island. We identify the variation δμ of the chemical potential of the electrodes as a function of the magnetization orientation as a key quantity that permits to tune the electrical properties of the device. Different effects occur depending on the relative size of δμ and the charging energy. We provide preliminary quantitative estimates of δμ using a very simple toy model for the electrodes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study single electron transport across a single Bi dopant in a silicon nanotransistor to assess how the strong hyperfine coupling with the Bi nuclear spin I = 9/2 affects the transport characteristics of the device. In the sequential tunneling regime we find that at, temperatures in the range of 100 mK, dI/dV curves reflect the zero field hyperfine splitting as well as its evolution under an applied magnetic field. Our non-equilibrium quantum simulations show that nuclear spins can be partially polarized parallel or antiparallel to the electronic spin just tuning the applied bias.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study single-electron transport through a graphene quantum dot with magnetic adsorbates. We focus on the relation between the spin order of the adsorbates and the linear conductance of the device. The electronic structure of the graphene dot with magnetic adsorbates is modeled through numerical diagonalization of a tight-binding model with an exchange potential. We consider several mechanisms by which the adsorbate magnetic state can influence transport in a single-electron transistor: tuning the addition energy, changing the tunneling rate, and in the case of spin-polarized electrodes, through magnetoresistive effects. Whereas the first mechanism is always present, the others require that the electrode has to have either an energy- or spin-dependent density of states. We find that graphene dots are optimal systems to detect the spin state of a few magnetic centers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The physics of the operation of singe-electron tunneling devices (SEDs) and singe-electron tunneling transistors (SETs), especially of those with multiple nanometer-sized islands, has remained poorly understood in spite of some intensive experimental and theoretical research. This computational study examines the current-voltage (IV) characteristics of multi-island single-electron devices using a newly developed multi-island transport simulator (MITS) that is based on semi-classical tunneling theory and kinetic Monte Carlo simulation. The dependence of device characteristics on physical device parameters is explored, and the physical mechanisms that lead to the Coulomb blockade (CB) and Coulomb staircase (CS) characteristics are proposed. Simulations using MITS demonstrate that the overall IV characteristics in a device with a random distribution of islands are a result of a complex interplay among those factors that affect the tunneling rates that are fixed a priori (e.g. island sizes, island separations, temperature, gate bias, etc.), and the evolving charge state of the system, which changes as the source-drain bias (VSD) is changed. With increasing VSD, a multi-island device has to overcome multiple discrete energy barriers (up-steps) before it reaches the threshold voltage (Vth). Beyond Vth, current flow is rate-limited by slow junctions, which leads to the CS structures in the IV characteristic. Each step in the CS is characterized by a unique distribution of island charges with an associated distribution of tunneling probabilities. MITS simulation studies done on one-dimensional (1D) disordered chains show that longer chains are better suited for switching applications as Vth increases with increasing chain length. They are also able to retain CS structures at higher temperatures better than shorter chains. In sufficiently disordered 2D systems, we demonstrate that there may exist a dominant conducting path (DCP) for conduction, which makes the 2D device behave as a quasi-1D device. The existence of a DCP is sensitive to the device structure, but is robust with respect to changes in temperature, gate bias, and VSD. A side gate in 1D and 2D systems can effectively control Vth. We argue that devices with smaller island sizes and narrower junctions may be better suited for practical applications, especially at room temperature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thermal dependence of the zero-bias conductance for the single electron transistor is the target of two independent renormalization-group approaches, both based on the spin-degenerate Anderson impurity model. The first approach, an analytical derivation, maps the Kondo-regime conductance onto the universal conductance function for the particle-hole symmetric model. Linear, the mapping is parametrized by the Kondo temperature and the charge in the Kondo cloud. The second approach, a numerical renormalization-group computation of the conductance as a function the temperature and applied gate voltages offers a comprehensive view of zero-bias charge transport through the device. The first approach is exact in the Kondo regime; the second, essentially exact throughout the parametric space of the model. For illustrative purposes, conductance curves resulting from the two approaches are compared.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The number of P700 (the reaction centre of Photosystem I) converted to P700+, in winter rye, was determined by measuring the absorbance change at 820nm . It was found, with a single turnover flash, that thylakoids isolated from cold grown plants have a 50% greater number of P700 oxidized than thylakoids isolated from warm grown plants. Incubation of thylakoids in the dark at 35 C did not change the number of P700 oxidized. The conversion of P700 to P700+ with a single flash can be compared to a steady state rate of electron transport using a Clark electrode. The results for P700 oxidation using the absorbance change at 820 nm measure effects within the PSI complex whereas the results obtained from a Clark electrode measures steady state electron transport between the cytochrome blf complex and the PSI complex. In contrast to the results for P700 oxidation it was shown, using a Clark electrode, that both thylakoids from cold grown plants and thylakoids incubated at in the dark 35 C exhibited 50% higher rates of electron transport than thylakoids from warm grown plants. The correlation between the higher rate of steady state PSI electron transport observed in thylakoids isolated from cold grown winter rye and number of active PSI reaction centres localizes the site of the increase to the PSI reaction centre. In contrast the lack of correlation after incubation at 35 C indicates the increase in the rate of light saturated electron transport in thylakoids isolated from cold grown plants and thylakoids incubated in the dark at 35 C occur by different mechanisms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thermal dependence of the zero-bias conductance for the single electron transistor is the target of two independent renormalization-group approaches, both based on the spin-degenerate Anderson impurity model. The first approach, an analytical derivation, maps the Kondo-regime conductance onto the universal conductance function for the particle-hole symmetric model. Linear, the mapping is parametrized by the Kondo temperature and the charge in the Kondo cloud. The second approach, a numerical renormalization-group computation of the conductance as a function the temperature and applied gate voltages offers a comprehensive view of zero-bias charge transport through the device. The first approach is exact in the Kondo regime; the second, essentially exact throughout the parametric space of the model. For illustrative purposes, conductance curves resulting from the two approaches are compared.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The first part of this work deals with the inverse problem solution in the X-ray spectroscopy field. An original strategy to solve the inverse problem by using the maximum entropy principle is illustrated. It is built the code UMESTRAT, to apply the described strategy in a semiautomatic way. The application of UMESTRAT is shown with a computational example. The second part of this work deals with the improvement of the X-ray Boltzmann model, by studying two radiative interactions neglected in the current photon models. Firstly it is studied the characteristic line emission due to Compton ionization. It is developed a strategy that allows the evaluation of this contribution for the shells K, L and M of all elements with Z from 11 to 92. It is evaluated the single shell Compton/photoelectric ratio as a function of the primary photon energy. It is derived the energy values at which the Compton interaction becomes the prevailing process to produce ionization for the considered shells. Finally it is introduced a new kernel for the XRF from Compton ionization. In a second place it is characterized the bremsstrahlung radiative contribution due the secondary electrons. The bremsstrahlung radiation is characterized in terms of space, angle and energy, for all elements whit Z=1-92 in the energy range 1–150 keV by using the Monte Carlo code PENELOPE. It is demonstrated that bremsstrahlung radiative contribution can be well approximated with an isotropic point photon source. It is created a data library comprising the energetic distributions of bremsstrahlung. It is developed a new bremsstrahlung kernel which allows the introduction of this contribution in the modified Boltzmann equation. An example of application to the simulation of a synchrotron experiment is shown.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The remarkable advances in nanoscience and nanotechnology over the last two decades allow one to manipulate individuals atoms, molecules and nanostructures, make it possible to build devices with only a few nanometers, and enhance the nano-bio fusion in tackling biological and medical problems. It complies with the ever-increasing need for device miniaturization, from magnetic storage devices, electronic building blocks for computers, to chemical and biological sensors. Despite the continuing efforts based on conventional methods, they are likely to reach the fundamental limit of miniaturization in the next decade, when feature lengths shrink below 100 nm. On the one hand, quantum mechanical efforts of the underlying material structure dominate device characteristics. On the other hand, one faces the technical difficulty in fabricating uniform devices. This has posed a great challenge for both the scientific and the technical communities. The proposal of using a single or a few organic molecules in electronic devices has not only opened an alternative way of miniaturization in electronics, but also brought up brand-new concepts and physical working mechanisms in electronic devices. This thesis work stands as one of the efforts in understanding and building of electronic functional units at the molecular and atomic levels. We have explored the possibility of having molecules working in a wide spectrum of electronic devices, ranging from molecular wires, spin valves/switches, diodes, transistors, and sensors. More specifically, we have observed significant magnetoresistive effect in a spin-valve structure where the non-magnetic spacer sandwiched between two magnetic conducting materials is replaced by a self-assembled monolayer of organic molecules or a single molecule (like a carbon fullerene). The diode behavior in donor(D)-bridge(B)-acceptor(A) type of single molecules is then discussed and a unimolecular transistor is designed. Lastly, we have proposed and primarily tested the idea of using functionalized electrodes for rapid nanopore DNA sequencing. In these studies, the fundamental roles of molecules and molecule-electrode interfaces on quantum electron transport have been investigated based on first-principles calculations of the electronic structure. Both the intrinsic properties of molecules themselves and the detailed interfacial features are found to play critical roles in electron transport at the molecular scale. The flexibility and tailorability of the properties of molecules have opened great opportunity in a purpose-driven design of electronic devices from the bottom up. The results that we gained from this work have helped in understanding the underlying physics, developing the fundamental mechanism and providing guidance for future experimental efforts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For half a century the integrated circuits (ICs) that make up the heart of electronic devices have been steadily improving by shrinking at an exponential rate. However, as the current crop of ICs get smaller and the insulating layers involved become thinner, electrons leak through due to quantum mechanical tunneling. This is one of several issues which will bring an end to this incredible streak of exponential improvement of this type of transistor device, after which future improvements will have to come from employing fundamentally different transistor architecture rather than fine tuning and miniaturizing the metal-oxide-semiconductor field effect transistors (MOSFETs) in use today. Several new transistor designs, some designed and built here at Michigan Tech, involve electrons tunneling their way through arrays of nanoparticles. We use a multi-scale approach to model these devices and study their behavior. For investigating the tunneling characteristics of the individual junctions, we use a first-principles approach to model conduction between sub-nanometer gold particles. To estimate the change in energy due to the movement of individual electrons, we use the finite element method to calculate electrostatic capacitances. The kinetic Monte Carlo method allows us to use our knowledge of these details to simulate the dynamics of an entire device— sometimes consisting of hundreds of individual particles—and watch as a device ‘turns on’ and starts conducting an electric current. Scanning tunneling microscopy (STM) and the closely related scanning tunneling spectroscopy (STS) are a family of powerful experimental techniques that allow for the probing and imaging of surfaces and molecules at atomic resolution. However, interpretation of the results often requires comparison with theoretical and computational models. We have developed a new method for calculating STM topographs and STS spectra. This method combines an established method for approximating the geometric variation of the electronic density of states, with a modern method for calculating spin-dependent tunneling currents, offering a unique balance between accuracy and accessibility.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The charge transport properties of a catechol-type dithiol-terminated oligo-phenylene-ethynylene was investigated by cyclic voltammetry (CV) and by the scanning tunnelling microscopy break junction technique (STM-BJ). Single molecule charge transport experiments demonstrated the existence of high and low conductance regions. The junction conductance is rather weakly dependent on the redox state of the bridging molecule. However, a distinct dependence of junction formation probability and of relative stretching distances of the catechol- and quinone-type molecular junctions is observed. Substitution of the central catechol ring with alkoxy-moieties and the combination with a topological analysis of possible π-electron pathways through the respective molecular skeletons lead to a working hypothesis, which could rationalize the experimentally observed conductance characteristics of the redox-active nanojunctions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Single gold particles may serve as room temperature single electron memory units because of their size dependent electronic level spacing. Here, we present a proof-of-concept study by electrochemically controlled scanning probe experiments performed on tailor-made Au particles of narrow dispersity. In particular, the charge transport characteristics through chemically synthesized hexane-1-thiol and 4-pyridylbenzene-1-thiol mixed monolayer protected Au144 clusters (MPCs) by differential pulse voltammetry (DPV) and electrochemical scanning tunneling spectroscopy (EC-STS) are reported. The pyridyl groups exposed by the Au-MPCs enable their immobilization on Pt(111) substrates. By varying the humidity during their deposition, samples coated by stacks of compact monolayers of Au-MPCs or decorated with individual, laterally separated Au-MPCs are obtained. DPV experiments with stacked monolayers of Au144-MPCs and EC-STS experiments with laterally separated individual Au144-MPCs are performed both in aqueous and ionic liquid electrolytes. Lower capacitance values were observed for individual clusters compared to ensemble clusters. This trend remains the same irrespective of the composition of the electrolyte surrounding the Au144-MPC. However, the resolution of the energy level spacing of the single clusters is strongly affected by the proximity of neighboring particles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La Teoria di Densità Funzionale (DFT) e la sua versione dipendente dal tempo (TDDFT) sono strumenti largamente usati per simulare e calcolare le proprietà statiche e dinamiche di sistemi con elettroni interagenti. La precisione del metodo si basa su una serie di approssimazioni degli effetti di exchange correlation fra gli elettroni, descritti da un funzionale della sola densità di carica. Nella presente tesi viene testata l'affidabilità del funzionale Mixed Localization Potential (MLP), una media pesata fra Single Orbital Approximation (SOA) e un potenziale di riferimento, ad esempio Local Density Approximation (LDA). I risultati mostrano capacità simulative superiori a LDA per i sistemi statici (curando anche un limite di LDA noto in letteratura come fractional dissociation) e dei progressi per sistemi dinamici quando si sviluppano correnti di carica. Il livello di localizzazione del sistema, inteso come la capacità di un elettrone di tenere lontani da sé altri elettroni, è descritto dalla funzione Electron Localization Function (ELF). Viene studiato il suo ruolo come guida nella costruzione e ottimizzazione del funzionale MLP.