982 resultados para Single Mn atom


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report on the reversible electrical control of the magnetic properties of a single Mn atom in an individual quantum dot. Our device permits us to prepare the dot in states with three different electric charges, 0, +1e, and -1e which result in dramatically different spin properties, as revealed by photoluminescence. Whereas in the neutral configuration the quantum dot is paramagnetic, the electron-doped dot spin states are spin rotationally invariant and the hole-doped dot spins states are quantized along the growth direction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The optical spectroscopy of a single InAs quantum dot doped with a single Mn atom is studied using a model Hamiltonian that includes the exchange interactions between the spins of the quantum dot electron-hole pair, the Mn atom, and the acceptor hole. Our model permits linking the photoluminescence spectra to the Mn spin states after photon emission. We focus on the relation between the charge state of the Mn, A0 or A−, and the different spectra which result through either band-to-band or band-to-acceptor transitions. We consider both neutral and negatively charged dots. Our model is able to account for recent experimental results on single Mn doped InAs photoluminescence spectra and can be used to account for future experiments in GaAs quantum dots. Similarities and differences with the case of single Mn doped CdTe quantum dots are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The spin dynamics of a single Mn atom in a laser driven CdTe quantum dot is addressed theoretically. Recent experimental results [ Gall et al. Phys. Rev. Lett. 102 127402 (2009);  Goryca et al. Phys. Rev. Lett. 103 087401 (2009)  Gall et al. Phys. Rev. B 81 245315 (2010)] show that it is possible to induce Mn spin polarization by means of circularly polarized optical pumping. Pumping is made possible by the faster Mn spin relaxation in the presence of the exciton. Here we discuss different Mn spin-relaxation mechanisms: first, Mn-phonon coupling, which is enhanced in the presence of the exciton; second, phonon induced hole spin relaxation combined with carrier-Mn spin-flip coupling and photon emission results in Mn spin relaxation. We model the Mn spin dynamics under the influence of a pumping laser that injects excitons into the dot, taking into account exciton-Mn exchange and phonon induced spin relaxation of both Mn and holes. Our simulations account for the optically induced Mn spin pumping.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We analyzed the photoluminescence intermittency generated by a single paramagnetic spin localized in an individual semiconductor quantum dot. The statistics of the photons emitted by the quantum dot reflect the quantum fluctuations of the localized spin interacting with the injected carriers. Photon correlation measurements, which are reported here, reveal unique signatures of these fluctuations. A phenomenological model is proposed to quantitatively describe these observations, allowing a measurement of the spin dynamics of an individual magnetic atom at zero magnetic field. These results demonstrate the existence of an efficient spin-relaxation channel arising from a spin exchange with individual carriers surrounding the quantum dot. A theoretical description of a spin-flip mechanism involving spin exchange with surrounding carriers gives relaxation times in good agreement with the measured dynamics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Extensively studied Mn-doped semiconductor nanocrystals have invariably exhibited photoluminescence over a narrow energy window of width <= 150 meV in the orange-red region and a surprisingly large spectral width (>= 180 meV), contrary to its presumed atomic-like origin. Carrying out emission measurements on individual single nanocrystals and supported by ab initio calculations, we show that Mn PL emission, in fact, can (i) vary over a much wider range (similar to 370 meV) covering the deep green-deep red region and (ii) exhibit widths substantially lower (similar to 60-75 meV) than reported so far, opening newer application possibilities and requiring a fundamental shift in our perception of the emission from Mn-doped semiconductor nanocrystals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A scanning tunneling microscope can probe the inelastic spin excitations of a single magnetic atom in a surface via spin-flip assisted tunneling in which transport electrons exchange spin and energy with the atomic spin. If the inelastic transport time, defined as the average time elapsed between two inelastic spin flip events, is shorter than the atom spin-relaxation time, the scanning tunnel microscope (STM) current can drive the spin out of equilibrium. Here we model this process using rate equations and a model Hamiltonian that describes successfully spin-flip-assisted tunneling experiments, including a single Mn atom, a Mn dimer, and Fe Phthalocyanine molecules. When the STM current is not spin polarized, the nonequilibrium spin dynamics of the magnetic atom results in nonmonotonic dI/dV curves. In the case of spin-polarized STM current, the spin orientation of the magnetic atom can be controlled parallel or antiparallel to the magnetic moment of the tip. Thus, spin-polarized STM tips can be used both to probe and to control the magnetic moment of a single atom.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose cotunneling as the microscopic mechanism that makes possible inelastic electron tunneling spectroscopy of magnetic atoms in surfaces for a wide range of systems, including single magnetic adatoms, molecules, and molecular stacks. We describe electronic transport between the scanning tip and the conducting surface through the magnetic system (MS) with a generalized Anderson model, without making use of effective spin models. Transport and spin dynamics are described with an effective cotunneling Hamiltonian in which the correlations in the magnetic system are calculated exactly and the coupling to the electrodes is included up to second order in the tip MS and MS substrate. In the adequate limit our approach is equivalent to the phenomenological Kondo exchange model that successfully describes the experiments. We apply our method to study in detail inelastic transport in two systems, stacks of cobalt phthalocyanines and a single Mn atom on Cu2N. Our method accounts for both the large contribution of the inelastic spin exchange events to the conductance and the observed conductance asymmetry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fabricating stable functional devices at the atomic scale is an ultimate goal of nanotechnology. In biological processes, such high-precision operations are accomplished by enzymes. A counterpart molecular catalyst that binds to a solid-state substrate would be highly desirable. Here, we report the direct observation of single Si adatoms catalyzing the dissociation of carbon atoms from graphene in an aberration-corrected high-resolution transmission electron microscope (HRTEM). The single Si atom provides a catalytic wedge for energetic electrons to chisel off the graphene lattice, atom by atom, while the Si atom itself is not consumed. The products of the chiseling process are atomic-scale features including graphene pores and clean edges. Our experimental observations and first-principles calculations demonstrated the dynamics, stability, and selectivity of such a single-atom chisel, which opens up the possibility of fabricating certain stable molecular devices by precise modification of materials at the atomic scale.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The magnetic properties and interactions between transition metal (TM) impurities and clusters in low-dimensional metallic hosts are studied using a first principles theoretical method. In the first part of this work, the effect of magnetic order in 3d-5d systems is addressed from the perspective of its influence on the enhancement of the magnetic anisotropy energy (MAE). In the second part, the possibility of using external electric fields (EFs) to control the magnetic properties and interactions between nanoparticles deposited at noble metal surfaces is investigated. The influence of 3d composition and magnetic order on the spin polarization of the substrate and its consequences on the MAE are analyzed for the case of 3d impurities in one- and two-dimensional polarizable hosts. It is shown that the MAE and easy- axis of monoatomic free standing 3d-Pt wires is mainly determined by the atomic spin-orbit (SO) coupling contributions. The competition between ferromagnetic (FM) and antiferromagnetic (AF) order in FePtn wires is studied in detail for n=1-4 as a function of the relative position between Fe atoms. Our results show an oscillatory behavior of the magnetic polarization of Pt atoms as a function of their distance from the magnetic impurities, which can be correlated to a long-ranged magnetic coupling of the Fe atoms. Exceptionally large variations of the induced spin and orbital moments at the Pt atoms are found as a function of concentration and magnetic order. Along with a violation of the third Hund’s rule at the Fe sites, these variations result in a non trivial behavior of the MAE. In the case of TM impurities and dimers at the Cu(111), the effects of surface charging and applied EFs on the magnetic properties and substrate-mediated magnetic interactions have been investigated. The modifications of the surface electronic structure, impurity local moments and magnetic exchange coupling as a result of the EF-induced metallic screening and charge rearrangements are analysed. In a first study, the properties of surface substitutional Co and Fe impurities are investigated as a function of the external charge per surface atom q. At large inter-impurity distances the effective magnetic exchange coupling ∆E between impurities shows RKKY-like oscillations as a function of the distance which are not significantly affected by the considered values of q. For distances r < 10 Å, important modifications in the magnitude of ∆E, involving changes from FM to AF coupling, are found depending non-monotonously on the value and polarity of q. The interaction energies are analysed from a local perspective. In a second study, the interplay between external EF effects, internal magnetic order and substrate-mediated magnetic coupling has been investigated for Mn dimers on Cu(111). Our calculations show that EF (∼ 1eV/Å) can induce a switching from AF to FM ground-state magnetic order within single Mn dimers. The relative coupling between a pair of dimers also shows RKKY-like oscillations as a function of the inter-dimer distance. Their effective magnetic exchange interaction is found to depend significantly on the magnetic order within the Mn dimers and on their relative orientation on the surface. The dependence of the substrate-mediated interaction on the magnetic state of the dimers is qualitatively explained in terms of the differences in the scattering of surface electrons. At short inter-dimer distances, the ground-state configuration is determined by an interplay between exchange interactions and EF effects. These results demonstrate that external surface charging and applied EFs offer remarkable possibilities of manipulating the sign and strength of the magnetic coupling of surface supported nanoparticles.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We study a single-electron transistor (SET) based upon a II–VI semiconductor quantum dot doped with a single-Mn ion. We present evidence that this system behaves like a quantum nanomagnet whose total spin and magnetic anisotropy depend dramatically both on the number of carriers and their orbital nature. Thereby, the magnetic properties of the nanomagnet can be controlled electrically. Conversely, the electrical properties of this SET depend on the quantum state of the Mn spin, giving rise to spin-dependent charging energies and hysteresis in the Coulomb blockade oscillations of the linear conductance.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We have carried out first-principles spin polarized calculations to obtain comprehensive information regarding the structural, magnetic, and electronic properties of the Mn-doped GaSb compound with dopant concentrations: x¼0.062, 0.083, 0.125, 0.25, and 0.50. The plane-wave pseudopotential method was used in order to calculate total energies and electronic structures. It was found that the MnGa substitution is the most stable configuration with a formation energy of 1.60 eV/Mn-atom. The calculated density of states shows that the half-metallic ferromagnetism is energetically stable for all dopant concentrations with a total magnetization of about 4.0 lB/Mn-atom. The results indicate that the magnetic ground state originates from the strong hybridization between Mn-d and Sb-p states, which agree with previous studies on Mn-doped wide gap semiconductors. This study gives new clues to the fabrication of diluted magnetic semiconductors

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The concentrations of polychlorinayed dibenzo-p-dioxins and dibenzofurans (PCDD/F) in surface sediment, soil, human hair, acid fish muscle from Ya-Er Lake area, China, were analyzed. The results showed that there were very high concentrations of PCDD/F existing in these samples. The results also indicated that Ya-Er Lake, which received a large amount of waste water from a nearby chloroalkali plant, was heavily polluted by PCDD:F. The present study demonstrated that those congeners, which possess at least three chlorine atoms in the lateral position with a fourth chlorine atom in the neighborhood bond of the third single chlorine atom, such as 1,2,7,8-TCDF and 2,3.6,7-TCDF, were very resistant to biodegradation due to the "neighbor effect" of every two chlorine atoms. The present study suggested that human hair may be a suitable alternative bioindicator for detecting PCDD/F exposure. (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

High Curie temperature of 900 K has been reported in Cr-doped AlN diluted magnetic semiconductors prepared by various methods, which is exciting for spintronic applications. It is believed that N defects play important roles in achieving the high-temperature ferromagnetism in good samples. Motivated by these experimental advances, we use a full-potential density-functional-theory method and supercell approach to investigate N defects and their effects on ferromagnetism of (Al,Cr)N with N vacancies (V-N). We investigate the structural and electronic properties of V-N, single Cr atom, Cr-Cr atom pairs, Cr-V-N pairs, and so on. In each case, the most stable structure is obtained by comparing different atomic configurations optimized in terms of the total energy and the force on every atom, and then it is used to calculate the defect formation energy and study the electronic structures. Our total-energy calculations show that the nearest substitutional Cr-Cr pair with the two spins in parallel is the most favorable and the nearest Cr-V-N pair makes a stable complex. Our formation energies indicate that V-N regions can be formed spontaneously under N-poor condition because the minimal V-N formation energy equals -0.23 eV or Cr-doped regions with high enough concentrations can be formed under N-rich condition because the Cr formation energy equals 0.04 eV, and hence real Cr-doped AlN samples are formed by forming some Cr-doped regions and separated V-N regions and through subsequent atomic relaxation during annealing. Both of the single Cr atom and the N vacancy create filled electronic states in the semiconductor gap of AlN. N vacancies enhance the ferromagnetism by adding mu(B) to the Cr moment each but reduce the ferromagnetic exchange constants between the spins in the nearest Cr-Cr pairs. These calculated results are in agreement with experimental observations and facts of real Cr-doped AlN samples and their synthesis. Our first-principles results are useful to elucidate the mechanism for the ferromagnetism and to explore high-performance Cr-doped AlN diluted magnetic semiconductors.