999 resultados para Single Atoms


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The inelastic portion of the tunnel current through an individual magnetic atom grants unique access to read out and change the atom’s spin state, but it also provides a path for spontaneous relaxation and decoherence. Controlled closure of the inelastic channel would allow for the latter to be switched off at will, paving the way to coherent spin manipulation in single atoms. Here, we demonstrate complete closure of the inelastic channels for both spin and orbital transitions due to a controlled geometric modification of the atom’s environment, using scanning tunneling microscopy (STM). The observed suppression of the excitation signal, which occurs for Co atoms assembled into chains on a Cu2N substrate, indicates a structural transition affecting the dz2 orbital, effectively cutting off the STM tip from the spin-flip cotunneling path.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Solid-state quantum computer architectures with qubits encoded using single atoms are now feasible given recent advances in the atomic doping of semiconductors. Here we present a charge qubit consisting of two dopant atoms in a semiconductor crystal, one of which is singly ionized. Surface electrodes control the qubit and a radio-frequency single-electron transistor provides fast readout. The calculated single gate times, of order 50 ps or less, are much shorter than the expected decoherence time. We propose universal one- and two-qubit gate operations for this system and discuss prospects for fabrication and scale up.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cooperative scattering of light by an extended object such as an atomic ensemble or a dielectric sphere is fundamentally different from scattering from many pointlike scatterers such as single atoms. Homogeneous distributions tend to scatter cooperatively, whereas fluctuations of the density distribution increase the disorder and suppress cooperativity. In an atomic cloud, the amount of disorder can be tuned via the optical thickness, and its role can be studied via the radiation force exerted by the light on the atomic cloud. Monitoring cold (87)Rb atoms released from a magneto-optical trap, we present the first experimental signatures of radiation force reduction due to cooperative scattering. The results are in agreement with an analytical expression interpolating between the disorder and the cooperativity-dominated regimes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The T-cell receptor (TCR) interaction with antigenic peptides (p) presented by the major histocompatibility complex (MHC) molecule is a key determinant of immune response. In addition, TCR-pMHC interactions offer examples of features more generally pertaining to protein-protein recognition: subtle specificity and cross-reactivity. Despite their importance, molecular details determining the TCR-pMHC binding remain unsolved. However, molecular simulation provides the opportunity to investigate some of these aspects. In this study, we perform extensive equilibrium and steered molecular dynamics simulations to study the unbinding of three TCR-pMHC complexes. As a function of the dissociation reaction coordinate, we are able to obtain converged H-bond counts and energy decompositions at different levels of detail, ranging from the full proteins, to separate residues and water molecules, down to single atoms at the interface. Many observed features do not support a previously proposed two-step model for TCR recognition. Our results also provide keys to interpret experimental point-mutation results. We highlight the role of water both in terms of interface resolvation and of water molecules trapped in the bound complex. Importantly, we illustrate how two TCRs with similar reactivity and structures can have essentially different binding strategies. Proteins 2011; © 2011 Wiley-Liss, Inc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We introduce a width parameter that bounds the complexity of classical planning problems and domains, along with a simple but effective blind-search procedure that runs in time that is exponential in the problem width. We show that many benchmark domains have a bounded and small width provided thatgoals are restricted to single atoms, and hence that such problems are provably solvable in low polynomial time. We then focus on the practical value of these ideas over the existing benchmarks which feature conjunctive goals. We show that the blind-search procedure can be used for both serializing the goal into subgoals and for solving the resulting problems, resulting in a ‘blind’ planner that competes well with a best-first search planner guided by state-of-the-art heuristics. In addition, ideas like helpful actions and landmarks can be integrated as well, producing a planner with state-of-the-art performance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nanotechnology entails the manufacturing and manipulation of matter at length scales ranging from single atoms to micron-sized objects. The ability to address properties on the biologically-relevant nanometer scale has made nanotechnology attractive for Nanomedicine. This is perceived as a great opportunity in healthcare especially in diagnostics, therapeutics and more in general to develop personalized medicine. Nanomedicine has the potential to enable early detection and prevention, and to improve diagnosis, mass screening, treatment and follow-up of many diseases. From the biological standpoint, nanomaterials match the typical size of naturally occurring functional units or components of living organisms and, for this reason, enable more effective interaction with biological systems. Nanomaterials have the potential to influence the functionality and cell fate in the regeneration of organs and tissues. To this aim, nanotechnology provides an arsenal of techniques for intervening, fabricate, and modulate the environment where cells live and function. Unconventional micro- and nano-fabrication techniques allow patterning biomolecules and biocompatible materials down to the level of a few nanometer feature size. Patterning is not simply a deterministic placement of a material; in a more extended acception it allows a controlled fabrication of structures and gradients of different nature. Gradients are emerging as one of the key factors guiding cell adhesion, proliferation, migration and even differentiation in the case of stem cells. The main goal of this thesis has been to devise a nanotechnology-based strategy and tools to spatially and temporally control biologically-relevant phenomena in-vitro which are important in some fields of medical research.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis reports on the experimental realization, characterization and application of a novel microresonator design. The so-called “bottle microresonator” sustains whispering-gallery modes in which light fields are confined near the surface of the micron-sized silica structure by continuous total internal reflection. While whispering-gallery mode resonators in general exhibit outstanding properties in terms of both temporal and spatial confinement of light fields, their monolithic design makes tuning of their resonance frequency difficult. This impedes their use, e.g., in cavity quantum electrodynamics (CQED) experiments, which investigate the interaction of single quantum mechanical emitters of predetermined resonance frequency with a cavity mode. In contrast, the highly prolate shape of the bottle microresonators gives rise to a customizable mode structure, enabling full tunability. The thesis is organized as follows: In chapter I, I give a brief overview of different types of optical microresonators. Important quantities, such as the quality factor Q and the mode volume V, which characterize the temporal and spatial confinement of the light field are introduced. In chapter II, a wave equation calculation of the modes of a bottle microresonator is presented. The intensity distribution of different bottle modes is derived and their mode volume is calculated. A brief description of light propagation in ultra-thin optical fibers, which are used to couple light into and out of bottle modes, is given as well. The chapter concludes with a presentation of the fabrication techniques of both structures. Chapter III presents experimental results on highly efficient, nearly lossless coupling of light into bottle modes as well as their spatial and spectral characterization. Ultra-high intrinsic quality factors exceeding 360 million as well as full tunability are demonstrated. In chapter IV, the bottle microresonator in add-drop configuration, i.e., with two ultra-thin fibers coupled to one bottle mode, is discussed. The highly efficient, nearly lossless coupling characteristics of each fiber combined with the resonator's high intrinsic quality factor, enable resonant power transfers between both fibers with efficiencies exceeding 90%. Moreover, the favorable ratio of absorption and the nonlinear refractive index of silica yields optical Kerr bistability at record low powers on the order of 50 µW. Combined with the add-drop configuration, this allows one to route optical signals between the outputs of both ultra-thin fibers, simply by varying the input power, thereby enabling applications in all-optical signal processing. Finally, in chapter V, I discuss the potential of the bottle microresonator for CQED experiments with single atoms. Its Q/V-ratio, which determines the ratio of the atom-cavity coupling rate to the dissipative rates of the subsystems, aligns with the values obtained for state-of-the-art CQED microresonators. In combination with its full tunability and the possibility of highly efficient light transfer to and from the bottle mode, this makes the bottle microresonator a unique tool for quantum optics applications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Topic of this thesis is the development of experiments behind the gas-filled separator TASCA(TransActinide Separator and Chemistry Apparatus) to study the chemical properties of the transactinide elements.rnIn the first part of the thesis, the electrodepositions of short-lived isotopes of ruthenium and osmium on gold electrodes were studied as model experiments for hassium. From literature it is known that the deposition potential of single atoms differs significantly from the potential predicted by the Nernst equation. This shift of the potential depends on the adsorption enthalpy of therndeposited element on the electrode material. If the adsorption on the electrode-material is favoured over the adsorption on a surface made of the same element as the deposited atom, the electrode potential is shifted to higher potentials. This phenomenon is called underpotential deposition.rnPossibilities to automatize an electro chemistry experiment behind the gas-filled separator were explored for later studies with transactinide elements.rnThe second part of this thesis is about the in-situ synthesis of transition-metal-carbonyl complexes with nuclear reaction products. Fission products of uranium-235 and californium-249 were produced at the TRIGA Mainz reactor and thermalized in a carbon-monoxide containing atmosphere. The formed volatile metal-carbonyl complexes could be transported in a gas-stream.rnFurthermore, short-lived isotopes of tungsten, rhenium, osmium, and iridium were synthesised at the linear accelerator UNILAC at GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt. The recoiling fusion products were separated from the primary beam and the transfer products in the gas-filled separator TASCA. The fusion products were stopped in the focal plane of TASCA in a recoil transfer chamber. This chamber contained a carbon-monoxide – helium gas mixture. The formed metal-carbonyl complexes could be transported in a gas stream to various experimental setups. All synthesised carbonyl complexes were identified by nuclear decay spectroscopy. Some complexes were studied with isothermal chromatography or thermochromatography methods. The chromatograms were compared with Monte Carlo Simulations to determine the adsorption enthalpyrnon silicon dioxide and on gold. These simulations based on existing codes, that were modified for the different geometries of the chromatography channels. All observed adsorption enthalpies (on silcon oxide as well as on gold) are typical for physisorption. Additionally, the thermalstability of some of the carbonyl complexes was studied. This showed that at temperatures above 200 °C therncomplexes start to decompose.rnIt was demonstrated that carbonyl-complex chemistry is a suitable method to study rutherfordium, dubnium, seaborgium, bohrium, hassium, and meitnerium. Until now, only very simple, thermally stable compounds have been synthesized in the gas-phase chemistry of the transactindes. With the synthesis of transactinide-carbonyl complexes a new compound class would be discovered. Transactinide chemistry would reach the border between inorganic and metallorganic chemistry.rnFurthermore, the in-situ synthesised carbonyl complexes would allow nuclear spectroscopy studies under low background conditions making use of chemically prepared samples.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Die vorliegende Arbeit behandelt die Anwendung der Rasterkraftmikroskopie auf die Untersuchung mesostrukturierter Materialien. Mesostrukturierte Materialien setzen sich aus einzelnen mesoskopen Bausteinen zusammen. Diese Untereinheiten bestimmen im Wesentlichen ihr charakteristisches Verhalten auf äußere mechanische oder elektrische Reize, weshalb diesen Materialien eine besondere Rolle in der Natur sowie im täglichen Leben zukommt. Ein genaues Verständnis der Selbstorganisation dieser Materialien und der Wechselwirkung der einzelnen Bausteine untereinander ist daher von essentieller Bedeutung zur Entwicklung neuer Synthesestrategien sowie zur Optimierung ihrer Materialeigenschaften. Die Charakterisierung dieser mesostrukturierten Materialien erfolgt üblicherweise mittels makroskopischer Analysemethoden wie der dielektrischen Breitbandspektroskopie, Thermogravimetrie sowie in Biegungsexperimenten. In dieser Arbeit wird gezeigt, wie sich diese Analysemethoden mit der Rasterkraftmikroskopie verbinden lassen, um mesostrukturierte Materialien zu untersuchen. Die Rasterkraftmikroskopie bietet die Möglichkeit, die Oberfläche eines Materials abzubilden und zusätzlich dazu seine quantitativen Eigenschaften, wie die mechanische Biegefestigkeit oder die dielektrische Relaxation, zu bestimmen. Die Übertragung makroskopischer Analyseverfahren auf den Nano- bzw. Mikrometermaßstab mittels der Rasterkraftmikroskopie erlaubt die Charakterisierung von räumlich sehr begrenzten Proben bzw. von Proben, die nur in einer sehr kleinen Menge (<10 mg) vorliegen. Darüberhinaus umfasst das Auflösungsvermögen eines Rasterkraftmikroskops, welche durch die Größe seines Federbalkens (50 µm) sowie seines Spitzenradius (5 nm) definiert ist, genau den Längenskalenbereich, der einzelne Atome mit der makroskopischen Welt verbindet, nämlich die Mesoskala. In dieser Arbeit werden Polymerfilme, kolloidale Nanofasern sowie Biomineralien ausführlicher untersucht.rnIm ersten Projekt werden mittels Rasterkraftmikroskopie dielektrische Spektren von mischbaren Polymerfilmen aufgenommen und mit ihrer lokalen Oberflächenstruktur korreliert. Im zweiten Projekt wird die Rasterkraftmikroskopie eingesetzt, um Biegeexperimente an kolloidalen Nanofasern durchzuführen und so ihre Brucheigenschaften genauer zu untersuchen. Im letzten Projekt findet diese Methode Anwendung bei der Charakterisierung der Biegeeigenschaften von Biomineralien. Des Weiteren erfolgt eine Analyse der organischen Zusammensetzung dieser Biomineralien. Alle diese Projekte demonstrieren die vielseitige Einsetzbarkeit der Rasterkraftmikroskopie zur Charakterisierung mesostrukturierter Materialien. Die Korrelation ihrer mechanischen und dielektrischen Eigenschaften mit ihrer topographischen Beschaffenheit erlaubt ein tieferes Verständnis der mesoskopischen Materialien und ihres Verhaltens auf die Einwirkung äußerer Stimuli.rn

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The ribosome is central to protein biosynthesis and the focus of extensive research. Recent biochemical and structural studies, especially detailed crystal structures and high resolution Cryo-EM in different functional states have broadened our understanding of the ribosome and its mode of action. However, the exact mechanism of peptide bond formation and how the ribosome catalyzes this reaction is not yet understood. Also, consequences of direct oxidative stress to the ribosome and its effects on translation have not been studied. So far, no conventional replacement or even removal of the peptidyl transferase center's bases has been able to affect in vitro translation. Significant contribution to the catalytic activity seems to stem from the ribose-phosphate backbone, specifically 2'OH of A2451. Using the technique of atomic mutagenesis, novel unnatural bases can be introduced to any desired position in the 23S rRNA, surpassing conventional mutagenesis and effectively enabling to alter single atoms in the ribosome. Reconstituting ribosomes in vitro using this approach, we replaced universally conserved PTC bases with synthetic counterparts carrying the most common oxidations 8-oxorA, 5-HOrU and 5-HOrC. To investigate the consequent effects on translation, the chemically engineered ribosomes were studied the in various functional assays. Incorporation of different oxidized bases into the 70S ribosome affected the ribosomes in different ways. Depending on the nucleobase modified, the reconstituted ribosomes exhibited radical deceleration of peptide bond formation, decrease of synthesis efficiency or even an increase of translation rate. These results may further our understanding of the residues involved in the peptide bond formation mechanism, as well as the disease-relevant effects of oxydative stress on the translation machinery.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The ribosome is central to protein biosynthesis and the focus of extensive research. Recent biochemical and structural studies, especially detailed crystal structures and high resolution Cryo-EM in different functional states have broadened our understanding of the ribosome and its mode of action. However, the exact mechanism of peptide bond formation and how the ribosome catalyzes this reaction is not yet understood. Also, consequences of direct oxidative stress to the ribosome and its effects on translation have not been studied. So far, no conventional replacement or even removal of the peptidyl transferase center's bases has been able to affect in vitro translation. Significant contribution to the catalytic activity seems to stem from the ribose-phosphate backbone, specifically 2'OH of A2451. Using the technique of atomic mutagenesis, novel unnatural bases can be introduced to any desired position in the 23S rRNA, surpassing conventional mutagenesis and effectively enabling to alter single atoms in the ribosome. Reconstituting ribosomes in vitro using this approach, we replaced universally conserved PTC bases with synthetic counterparts carrying the most common oxidations 8-oxorA, 5-HOrU and 5-HOrC. To investigate the consequent effects on translation, the chemically engineered ribosomes were studied the in various functional assays. Incorporation of different oxidized bases into the 70S ribosome affected the ribosomes in different ways. Depending on the nucleobase modified, the reconstituted ribosomes exhibited radical deceleration of peptide bond formation, decrease of synthesis efficiency or even an increase of translation rate. These results may further our understanding of the residues involved in the peptide bond formation mechanism, as well as the disease-relevant effects of oxydative stress on the translation machinery.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We analyze photoionization and ion detection as a means of accurately counting ultracold atoms. We show that it is possible to count clouds containing many thousands of atoms with accuracies better than N-1/2 with current technology. This allows the direct probing of sub-Poissonian number statistics of atomic samples. The scheme can also be used for efficient single-atom detection with high spatiotemporal resolution. All aspects of a realistic detection scheme are considered, and we discuss experimental situations in which such a scheme could be implemented.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Using a scanning tunnelling microscope or mechanically controllable break junction it has been shown that it is possible to control the formation of a wire made of single gold atoms. In these experiments an interatomic distance between atoms in the chain of ∼3.6 Å was reported which is not consistent with recent theoretical calculations. Here, using precise calibration procedures for both techniques, we measure the length of the atomic chains. Based on the distance between the peaks observed in the chain length histogram we find the mean value of the interatomic distance before chain rupture to be 2.5±0.2 Å. This value agrees with the theoretical calculations for the bond length. The discrepancy with the previous experimental measurements was due to the presence of He gas, that was used to promote the thermal contact, and which affects the value of the work function that is commonly used to calibrate distances in scanning tunnelling microscopy and mechanically controllable break junctions at low temperatures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Intervalley interference between degenerate conduction band minima has been shown to lead to oscillations in the exchange energy between neighboring phosphorus donor electron states in silicon [B. Koiller, X. Hu, and S. Das Sarma, Phys. Rev. Lett. 88, 027903 (2002); Phys. Rev. B 66, 115201 (2002)]. These same effects lead to an extreme sensitivity of the exchange energy on the relative orientation of the donor atoms, an issue of crucial importance in the construction of silicon-based spin quantum computers. In this article we calculate the donor electron exchange coupling as a function of donor position incorporating the full Bloch structure of the Kohn-Luttinger electron wave functions. It is found that due to the rapidly oscillating nature of the terms they produce, the periodic part of the Bloch functions can be safely ignored in the Heitler-London integrals as was done by Koiller, Hu, and Das Sarma, significantly reducing the complexity of calculations. We address issues of fabrication and calculate the expected exchange coupling between neighboring donors that have been implanted into the silicon substrate using an 15 keV ion beam in the so-called top down fabrication scheme for a Kane solid-state quantum computer. In addition, we calculate the exchange coupling as a function of the voltage bias on control gates used to manipulate the electron wave functions and implement quantum logic operations in the Kane proposal, and find that these gate biases can be used to both increase and decrease the magnitude of the exchange coupling between neighboring donor electrons. The zero-bias results reconfirm those previously obtained by Koiller, Hu, and Das Sarma.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This investigation comprises a comparison of experimental and theoretical dechanneling of MeV protons in copper single crystals. Dechanneling results when an ion's transverse energy increases to the value where the ion can undergo small impact parameter collisions with individual atoms. Depth dependent dechanneling rates were determined as functions of lattice temperature, ion beam energy and crystal axis orientation. Ion beam energies were IMeV and 2MeV,temperatures ranged from 35 K to 280 K and the experiment was carried out along both the (lOa) and <110) axes. Experimental data took the form of aligned and random Rutherford backscattered energy spectra. Dechanneling rates were extracted from these spectra using a single scattering theory that took explicit account of the different stopping powers experienced by channeled and dechanneled ions and also included a correction factor to take into account multiple scattering effects along the ion's trajectory. The assumption of statistical equilibrium and small angle scattering of the channeled ions allows a description of dechanneling in terms of the solution of a diffusion like equation which contains a so called diffusion function. The diffusion function is shown to be related to the increase in average transverse energy. Theoretical treatments of increase in average transverse energy due to collisions of projectiles with channel electrons and thermal perturbations in the lattice potential are reviewed. Using the diffusion equation and the electron density in the channel centre as a fitting parameter dechanneling rates are extracted. Excellent agreement between theory and experiment has been demonstrated. Electron densities determined in the fitting procedure appear to be realistic. The surface parameters show themselves to be good indicators of the quality of the crystal.