831 resultados para Simulator. Educational Robotics. Virtual Environment
Resumo:
We propose a robotics simulation platform, named S-Educ, developed specifically for application in educational robotics, which can be used as an alternative or in association with robotics kits in classes involving the use of robotics. In the usually known approach, educational robotics uses robotics kits for classes which generally include interdisciplinary themes. The idea of this work is not to replace these kits, but to use the developed simulator as an alternative, where, for some reason, the traditional kits cannot be used, or even to use the platform in association with these kits. To develop the simulator, initially, we conducted research in the literature on the use of robotic simulators and robotic kits, facing the education sector, from which it was possible to define a set of features considered important for creating such a tool. Then, on the software development phase, the simulator S-Educ was implemented, taking into account the requirements and features defined in the design phase. Finally, to validate the platform, several tests were conducted with teachers, students and lay adults, in which it was used the simulator S-Educ, to evaluate its use in educational robotics classes. The results show that robotic simulator allows a reduction of financial costs, facilitate testing and reduce robot damage inherent to its use, in addition to other advantages. Furthermore, as a contribution to the community, the proposed tool can be used to increase adhesion of Brazilian schools to the methodologies of educational robotics or to robotics competitions
Resumo:
Digital Songlines (DSL) is an Australasian CRC for Interaction Design (ACID) project that is developing protocols, methodologies and toolkits to facilitate the collection, education and sharing of indigenous cultural heritage knowledge. This paper outlines the goals achieved over the last three years in the development of the Digital Songlines game engine (DSE) toolkit that is used for Australian Indigenous storytelling. The project explores the sharing of indigenous Australian Aboriginal storytelling in a sensitive manner using a game engine. The use of the game engine in the field of Cultural Heritage is expanding. They are an important tool for the recording and re-presentation of historically, culturally, and sociologically significant places, infrastructure, and artefacts, as well as the stories that are associated with them. The DSL implementation of a game engine to share storytelling provides an educational interface. Where the DSL implementation of a game engine in a CH application differs from others is in the nature of the game environment itself. It is modelled on the 'country' (the 'place' of their heritage which is so important to the clients' collective identity) and authentic fauna and flora that provides a highly contextualised setting for the stories to be told. This paper provides an overview on the development of the DSL game engine.
Resumo:
Psychosis is a mental disorder that affects 1-2% of the population at some point in their lives. One of the main causes of psychosis is the mental illness schizophrenia. Sufferers of this illness often have terrifying symptoms such as hallucinations, delusions, and thought disorder. This project aims to develop a virtual environment to simulate the experience of psychosis, focusing on re-creating auditory and visual hallucinations. A model of a psychiatric ward was created and the psychosis simulation software was written to re-create the auditory and visual hallucinations of one particular patient. The patient was very impressed with the simulation, and commented that it effectively re-created the same emotions that she experienced on a day-to-day basis during her psychotic episodes. It is hoped that this work will result in a useful educational tool about schizophrenia, leading to improved training of clinicians, and fostering improved understanding and empathy toward sufferers of schizophrenia in the community, ultimately improving the quality of life and chances of recovery of patients.
Resumo:
Severe disabled children have little chance of environmental and social exploration and discovery, and due this lack of interaction and independency, it may lead to an idea that they are unable to do anything by themselves. This idea is called learned helplessness and is very negative for the child cognitive development and social development as well. With this entire situation it is very likely that the self-steam and mood of this child. Trying to help these children on this situation, educational robotics can offer and aid, once it can give them a certain degree of independency in exploration of environment. The system developed in this work allows the child to transmit the commands to a robot. Sensors placed on the child's body can obtain information from head movement or muscle pulses to command the robot to carry the tasks. Also, this system can be used with a variety of robots, being necessary just a previous configuration. It is expected that, with the usage of this system, the disabled children have a better cognitive development and social interaction, balancing in a certain way, the negative effects of their disabilities. © 2011 IEEE.
Resumo:
Il presente elaborato descrive la realizzazione, presso il Laboratorio di Realtà Virtuale e Simulazione della Seconda Facoltà di Ingegneria, di un RVE (Reconfigurable Virtual Environment), per applicazioni nei settori dell’ingegneria industriale. La tesi ripercorre la fase di progettazione del sistema basato sull'integrazione di componenti COTS. E' definito, inoltre, un insieme di applicazioni target nei settori dell'ingegneria industriale di cui si valuta la compatibilità con il Virtual Environment. L'elaborato si conclude con la presentazione dei risultati e dei possibili sviluppi futuri.
Resumo:
Due to the popularity of modern Collaborative Virtual Environments, there has been a related increase in their size and complexity. Developers therefore need visualisations that expose usage patterns from logged data, to understand the structures and dynamics of these complex environments. This chapter presents a new framework for the process of visualising virtual environment usage data. Major components, such as an event model, designer task model and data acquisition infrastructure are described. Interface and implementation factors are also developed, along with example visualisation techniques that make use of the new task and event model. A case study is performed to illustrate a typical scenario for the framework, and its benefits to the environment development team.
Resumo:
Games and related virtual environments have been a much-hyped area of the entertainment industry. The classic quote is that games are now approaching the size of Hollywood box office sales [1]. Books are now appearing that talk up the influence of games on business [2], and it is one of the key drivers of present hardware development. Some of this 3D technology is now embedded right down at the operating system level via the Windows Presentation Foundations – hit Windows/Tab on your Vista box to find out... In addition to this continued growth in the area of games, there are a number of factors that impact its development in the business community. Firstly, the average age of gamers is approaching the mid thirties. Therefore, a number of people who are in management positions in large enterprises are experienced in using 3D entertainment environments. Secondly, due to the pressure of demand for more computational power in both CPU and Graphical Processing Units (GPUs), your average desktop, any decent laptop, can run a game or virtual environment. In fact, the demonstrations at the end of this paper were developed at the Queensland University of Technology (QUT) on a standard Software Operating Environment, with an Intel Dual Core CPU and basic Intel graphics option. What this means is that the potential exists for the easy uptake of such technology due to 1. a broad range of workers being regularly exposed to 3D virtual environment software via games; 2. present desktop computing power now strong enough to potentially roll out a virtual environment solution across an entire enterprise. We believe such visual simulation environments can have a great impact in the area of business process modeling. Accordingly, in this article we will outline the communication capabilities of such environments, giving fantastic possibilities for business process modeling applications, where enterprises need to create, manage, and improve their business processes, and then communicate their processes to stakeholders, both process and non-process cognizant. The article then concludes with a demonstration of the work we are doing in this area at QUT.
Resumo:
Business Process Modelling is a fast growing field in business and information technology, which uses visual grammars to model and execute the processes within an organisation. However, many analysts present such models in a 2D static and iconic manner that is difficult to understand by many stakeholders. Difficulties in understanding such grammars can impede the improvement of processes within an enterprise due to communication problems. In this chapter we present a novel framework for intuitively visualising animated business process models in interactive Virtual Environments. We also show that virtual environment visualisations can be performed with present 2D business process modelling technology, thus providing a low barrier to entry for business process practitioners. Two case studies are presented from film production and healthcare domains that illustrate the ease with which these visualisations can be created. This approach can be generalised to other executable workflow systems, for any application domain being modelled.
Resumo:
The increasingly widespread use of large-scale 3D virtual environments has translated into an increasing effort required from designers, developers and testers. While considerable research has been conducted into assisting the design of virtual world content and mechanics, to date, only limited contributions have been made regarding the automatic testing of the underpinning graphics software and hardware. In the work presented in this paper, two novel neural network-based approaches are presented to predict the correct visualization of 3D content. Multilayer perceptrons and self-organizing maps are trained to learn the normal geometric and color appearance of objects from validated frames and then used to detect novel or anomalous renderings in new images. Our approach is general, for the appearance of the object is learned rather than explicitly represented. Experiments were conducted on a game engine to determine the applicability and effectiveness of our algorithms. The results show that the neural network technology can be effectively used to address the problem of automatic and reliable visual testing of 3D virtual environments.
Resumo:
Asoftware-based environment was developed to provide practical training in medical radiation principles and safety. The Virtual Radiation Laboratory application allowed students to conduct virtual experiments using simulated diagnostic and radiotherapy X-ray generators. The experiments were designed to teach students about the inverse square law, half value layer and radiation protection measures and utilised genuine clinical and experimental data. Evaluation of the application was conducted in order to ascertain the impact of the software on students’ understanding, satisfaction and collaborative learning skills and also to determine potential further improvements to the software and guidelines for its continued use. Feedback was gathered via an anonymous online survey consisting of a mixture of Likert-style questions and short answer open questions. Student feedback was highly positive with 80 % of students reporting increased understanding of radiation protection principles. Furthermore 72 % enjoyed using the software and 87 %of students felt that the project facilitated collaboration within small groups. The main themes arising in the qualitative feedback comments related to efficiency and effectiveness of teaching, safety of environment, collaboration and realism. Staff and students both report gains in efficiency and effectiveness associated with the virtual experiments. In addition students particularly value the visualisation of ‘‘invisible’’ physical principles and increased opportunity for experimentation and collaborative problembased learning. Similar ventures will benefit from adopting an approach that allows for individual experimentation while visualizing challenging concepts.
Resumo:
Control of flow in duct networks has a myriad of applications ranging from heating, ventilation, and air-conditioning to blood flow networks. The system considered here provides vent velocity inputs to a novel 3-D wind display device called the TreadPort Active Wind Tunnel. An error-based robust decentralized sliding-mode control method with nominal feedforward terms is developed for individual ducts while considering cross coupling between ducts and model uncertainty as external disturbances in the output. This approach is important due to limited measurements, geometric complexities, and turbulent flow conditions. Methods for resolving challenges such as turbulence, electrical noise, valve actuator design, and sensor placement are presented. The efficacy of the controller and the importance of feedforward terms are demonstrated with simulations based upon an experimentally validated lumped parameter model and experiments on the physical system. Results show significant improvement over traditional control methods and validate prior assertions regarding the importance of decentralized control in practice.