995 resultados para Simulations d
Resumo:
La ventilation liquidienne totale (VLT) consiste à remplir les poumons d'un liquide perfluorocarbone (PFC). Un respirateur liquidien assure la ventilation par un renouvellement cyclique de volume courant de PFC oxygéné et à température contrôlée. Ayant une capacité thermique volumique 1665 fois plus élevée que l'air, le poumon rempli de PFC devient un échangeur de chaleur performant avec la circulation pulmonaire. La température du PFC inspiré permet ainsi de contrôler la température artérielle, et par le fait même, le refroidissement des organes et des tissus. Des résultats récents d'expérimentations animales sur petits animaux ont démontré que le refroidissement ultra-rapide par VLT hypothermisante (VLTh) avait d'importants effets neuroprotecteurs et cardioprotecteurs. Induire rapidement et efficacement une hypothermie chez un patient par VLTh est une technique émergente qui suscite de grands espoirs thérapeutiques. Par contre, aucun dispositif approuvé pour la clinique n'est disponible et aucun résultat de VLTh sur humain n'est encore disponible. Le problème se situe dans le fait de contrôler la température du PFC inspiré de façon optimale pour induire une hypothermie chez l'humain tout en s'assurant que la température cardiaque reste supérieure à 30 °C pour éviter tout risque d'arythmie. Cette thèse présente le développement d'un modèle thermique paramétrique d'un sujet en VLTh complètement lié à la physiologie. Aux fins de validation du modèle sur des ovins pédiatriques et adultes, le prototype de respirateur liquidien Inolivent pour nouveau-né a dû être reconçu et adapté pour ventiler de plus gros animaux. Pour arriver à contrôler de façon optimale la température du PFC inspiré, un algorithme de commande optimale sous-contraintes a été développé. Après la validation du modèle thermique du nouveau-né à l'adulte par expérimentations animales, celui-ci a été projeté à l'humain. Afin de réduire le temps de calcul, un passage du modèle thermique en temps continu vers un modèle discret cycle-par-cycle a été effectué. À l'aide de la commande optimale et du développement numérique d'un profil de ventilation liquidienne chez des patients humains, des simulations d'induction d'hypothermie par VLTh ont pu être réalisées. La validation expérimentale du modèle thermique sur ovins nouveau-nés (5 kg), juvéniles (22 kg) et adultes (61 kg) a montré que celui-ci permettait de prédire les températures artérielles systémiques, du retour veineux et rectales. La projection à l'humain a permis de démontrer qu'il est possible de contrôler la température du PFC de façon optimale en boucle ouverte si le débit cardiaque et le volume mort thermique sont connus. S'ils ne peuvent être mesurés, la commande optimale pour le pire cas peut être calculée rendant l'induction d'hypothermie par VLTh sécuritaire pour tous les patients, mais diminuant quelque peu les vitesses de refroidissement.
Resumo:
Notre consommation en eau souterraine, en particulier comme eau potable ou pour l'irrigation, a considérablement augmenté au cours des années. De nombreux problèmes font alors leur apparition, allant de la prospection de nouvelles ressources à la remédiation des aquifères pollués. Indépendamment du problème hydrogéologique considéré, le principal défi reste la caractérisation des propriétés du sous-sol. Une approche stochastique est alors nécessaire afin de représenter cette incertitude en considérant de multiples scénarios géologiques et en générant un grand nombre de réalisations géostatistiques. Nous rencontrons alors la principale limitation de ces approches qui est le coût de calcul dû à la simulation des processus d'écoulements complexes pour chacune de ces réalisations. Dans la première partie de la thèse, ce problème est investigué dans le contexte de propagation de l'incertitude, oú un ensemble de réalisations est identifié comme représentant les propriétés du sous-sol. Afin de propager cette incertitude à la quantité d'intérêt tout en limitant le coût de calcul, les méthodes actuelles font appel à des modèles d'écoulement approximés. Cela permet l'identification d'un sous-ensemble de réalisations représentant la variabilité de l'ensemble initial. Le modèle complexe d'écoulement est alors évalué uniquement pour ce sousensemble, et, sur la base de ces réponses complexes, l'inférence est faite. Notre objectif est d'améliorer la performance de cette approche en utilisant toute l'information à disposition. Pour cela, le sous-ensemble de réponses approximées et exactes est utilisé afin de construire un modèle d'erreur, qui sert ensuite à corriger le reste des réponses approximées et prédire la réponse du modèle complexe. Cette méthode permet de maximiser l'utilisation de l'information à disposition sans augmentation perceptible du temps de calcul. La propagation de l'incertitude est alors plus précise et plus robuste. La stratégie explorée dans le premier chapitre consiste à apprendre d'un sous-ensemble de réalisations la relation entre les modèles d'écoulement approximé et complexe. Dans la seconde partie de la thèse, cette méthodologie est formalisée mathématiquement en introduisant un modèle de régression entre les réponses fonctionnelles. Comme ce problème est mal posé, il est nécessaire d'en réduire la dimensionnalité. Dans cette optique, l'innovation du travail présenté provient de l'utilisation de l'analyse en composantes principales fonctionnelles (ACPF), qui non seulement effectue la réduction de dimensionnalités tout en maximisant l'information retenue, mais permet aussi de diagnostiquer la qualité du modèle d'erreur dans cet espace fonctionnel. La méthodologie proposée est appliquée à un problème de pollution par une phase liquide nonaqueuse et les résultats obtenus montrent que le modèle d'erreur permet une forte réduction du temps de calcul tout en estimant correctement l'incertitude. De plus, pour chaque réponse approximée, une prédiction de la réponse complexe est fournie par le modèle d'erreur. Le concept de modèle d'erreur fonctionnel est donc pertinent pour la propagation de l'incertitude, mais aussi pour les problèmes d'inférence bayésienne. Les méthodes de Monte Carlo par chaîne de Markov (MCMC) sont les algorithmes les plus communément utilisés afin de générer des réalisations géostatistiques en accord avec les observations. Cependant, ces méthodes souffrent d'un taux d'acceptation très bas pour les problèmes de grande dimensionnalité, résultant en un grand nombre de simulations d'écoulement gaspillées. Une approche en deux temps, le "MCMC en deux étapes", a été introduite afin d'éviter les simulations du modèle complexe inutiles par une évaluation préliminaire de la réalisation. Dans la troisième partie de la thèse, le modèle d'écoulement approximé couplé à un modèle d'erreur sert d'évaluation préliminaire pour le "MCMC en deux étapes". Nous démontrons une augmentation du taux d'acceptation par un facteur de 1.5 à 3 en comparaison avec une implémentation classique de MCMC. Une question reste sans réponse : comment choisir la taille de l'ensemble d'entrainement et comment identifier les réalisations permettant d'optimiser la construction du modèle d'erreur. Cela requiert une stratégie itérative afin que, à chaque nouvelle simulation d'écoulement, le modèle d'erreur soit amélioré en incorporant les nouvelles informations. Ceci est développé dans la quatrième partie de la thèse, oú cette méthodologie est appliquée à un problème d'intrusion saline dans un aquifère côtier. -- Our consumption of groundwater, in particular as drinking water and for irrigation, has considerably increased over the years and groundwater is becoming an increasingly scarce and endangered resource. Nofadays, we are facing many problems ranging from water prospection to sustainable management and remediation of polluted aquifers. Independently of the hydrogeological problem, the main challenge remains dealing with the incomplete knofledge of the underground properties. Stochastic approaches have been developed to represent this uncertainty by considering multiple geological scenarios and generating a large number of realizations. The main limitation of this approach is the computational cost associated with performing complex of simulations in each realization. In the first part of the thesis, we explore this issue in the context of uncertainty propagation, where an ensemble of geostatistical realizations is identified as representative of the subsurface uncertainty. To propagate this lack of knofledge to the quantity of interest (e.g., the concentration of pollutant in extracted water), it is necessary to evaluate the of response of each realization. Due to computational constraints, state-of-the-art methods make use of approximate of simulation, to identify a subset of realizations that represents the variability of the ensemble. The complex and computationally heavy of model is then run for this subset based on which inference is made. Our objective is to increase the performance of this approach by using all of the available information and not solely the subset of exact responses. Two error models are proposed to correct the approximate responses follofing a machine learning approach. For the subset identified by a classical approach (here the distance kernel method) both the approximate and the exact responses are knofn. This information is used to construct an error model and correct the ensemble of approximate responses to predict the "expected" responses of the exact model. The proposed methodology makes use of all the available information without perceptible additional computational costs and leads to an increase in accuracy and robustness of the uncertainty propagation. The strategy explored in the first chapter consists in learning from a subset of realizations the relationship between proxy and exact curves. In the second part of this thesis, the strategy is formalized in a rigorous mathematical framework by defining a regression model between functions. As this problem is ill-posed, it is necessary to reduce its dimensionality. The novelty of the work comes from the use of functional principal component analysis (FPCA), which not only performs the dimensionality reduction while maximizing the retained information, but also allofs a diagnostic of the quality of the error model in the functional space. The proposed methodology is applied to a pollution problem by a non-aqueous phase-liquid. The error model allofs a strong reduction of the computational cost while providing a good estimate of the uncertainty. The individual correction of the proxy response by the error model leads to an excellent prediction of the exact response, opening the door to many applications. The concept of functional error model is useful not only in the context of uncertainty propagation, but also, and maybe even more so, to perform Bayesian inference. Monte Carlo Markov Chain (MCMC) algorithms are the most common choice to ensure that the generated realizations are sampled in accordance with the observations. Hofever, this approach suffers from lof acceptance rate in high dimensional problems, resulting in a large number of wasted of simulations. This led to the introduction of two-stage MCMC, where the computational cost is decreased by avoiding unnecessary simulation of the exact of thanks to a preliminary evaluation of the proposal. In the third part of the thesis, a proxy is coupled to an error model to provide an approximate response for the two-stage MCMC set-up. We demonstrate an increase in acceptance rate by a factor three with respect to one-stage MCMC results. An open question remains: hof do we choose the size of the learning set and identify the realizations to optimize the construction of the error model. This requires devising an iterative strategy to construct the error model, such that, as new of simulations are performed, the error model is iteratively improved by incorporating the new information. This is discussed in the fourth part of the thesis, in which we apply this methodology to a problem of saline intrusion in a coastal aquifer.
Resumo:
Recent technological advances in remote sensing have enabled investigation of the morphodynamics and hydrodynamics of large rivers. However, measuring topography and flow in these very large rivers is time consuming and thus often constrains the spatial resolution and reach-length scales that can be monitored. Similar constraints exist for computational fluid dynamics (CFD) studies of large rivers, requiring maximization of mesh-or grid-cell dimensions and implying a reduction in the representation of bedform-roughness elements that are of the order of a model grid cell or less, even if they are represented in available topographic data. These ``subgrid'' elements must be parameterized, and this paper applies and considers the impact of roughness-length treatments that include the effect of bed roughness due to ``unmeasured'' topography. CFD predictions were found to be sensitive to the roughness-length specification. Model optimization was based on acoustic Doppler current profiler measurements and estimates of the water surface slope for a variety of roughness lengths. This proved difficult as the metrics used to assess optimal model performance diverged due to the effects of large bedforms that are not well parameterized in roughness-length treatments. However, the general spatial flow patterns are effectively predicted by the model. Changes in roughness length were shown to have a major impact upon flow routing at the channel scale. The results also indicate an absence of secondary flow circulation cells in the reached studied, and suggest simpler two-dimensional models may have great utility in the investigation of flow within large rivers. Citation: Sandbach, S. D. et al. (2012), Application of a roughness-length representation to parameterize energy loss in 3-D numerical simulations of large rivers, Water Resour. Res., 48, W12501, doi: 10.1029/2011WR011284.
Resumo:
Résumé : La radiothérapie par modulation d'intensité (IMRT) est une technique de traitement qui utilise des faisceaux dont la fluence de rayonnement est modulée. L'IMRT, largement utilisée dans les pays industrialisés, permet d'atteindre une meilleure homogénéité de la dose à l'intérieur du volume cible et de réduire la dose aux organes à risque. Une méthode usuelle pour réaliser pratiquement la modulation des faisceaux est de sommer de petits faisceaux (segments) qui ont la même incidence. Cette technique est appelée IMRT step-and-shoot. Dans le contexte clinique, il est nécessaire de vérifier les plans de traitement des patients avant la première irradiation. Cette question n'est toujours pas résolue de manière satisfaisante. En effet, un calcul indépendant des unités moniteur (représentatif de la pondération des chaque segment) ne peut pas être réalisé pour les traitements IMRT step-and-shoot, car les poids des segments ne sont pas connus à priori, mais calculés au moment de la planification inverse. Par ailleurs, la vérification des plans de traitement par comparaison avec des mesures prend du temps et ne restitue pas la géométrie exacte du traitement. Dans ce travail, une méthode indépendante de calcul des plans de traitement IMRT step-and-shoot est décrite. Cette méthode est basée sur le code Monte Carlo EGSnrc/BEAMnrc, dont la modélisation de la tête de l'accélérateur linéaire a été validée dans une large gamme de situations. Les segments d'un plan de traitement IMRT sont simulés individuellement dans la géométrie exacte du traitement. Ensuite, les distributions de dose sont converties en dose absorbée dans l'eau par unité moniteur. La dose totale du traitement dans chaque élément de volume du patient (voxel) peut être exprimée comme une équation matricielle linéaire des unités moniteur et de la dose par unité moniteur de chacun des faisceaux. La résolution de cette équation est effectuée par l'inversion d'une matrice à l'aide de l'algorithme dit Non-Negative Least Square fit (NNLS). L'ensemble des voxels contenus dans le volume patient ne pouvant être utilisés dans le calcul pour des raisons de limitations informatiques, plusieurs possibilités de sélection ont été testées. Le meilleur choix consiste à utiliser les voxels contenus dans le Volume Cible de Planification (PTV). La méthode proposée dans ce travail a été testée avec huit cas cliniques représentatifs des traitements habituels de radiothérapie. Les unités moniteur obtenues conduisent à des distributions de dose globale cliniquement équivalentes à celles issues du logiciel de planification des traitements. Ainsi, cette méthode indépendante de calcul des unités moniteur pour l'IMRT step-andshootest validée pour une utilisation clinique. Par analogie, il serait possible d'envisager d'appliquer une méthode similaire pour d'autres modalités de traitement comme par exemple la tomothérapie. Abstract : Intensity Modulated RadioTherapy (IMRT) is a treatment technique that uses modulated beam fluence. IMRT is now widespread in more advanced countries, due to its improvement of dose conformation around target volume, and its ability to lower doses to organs at risk in complex clinical cases. One way to carry out beam modulation is to sum smaller beams (beamlets) with the same incidence. This technique is called step-and-shoot IMRT. In a clinical context, it is necessary to verify treatment plans before the first irradiation. IMRT Plan verification is still an issue for this technique. Independent monitor unit calculation (representative of the weight of each beamlet) can indeed not be performed for IMRT step-and-shoot, because beamlet weights are not known a priori, but calculated by inverse planning. Besides, treatment plan verification by comparison with measured data is time consuming and performed in a simple geometry, usually in a cubic water phantom with all machine angles set to zero. In this work, an independent method for monitor unit calculation for step-and-shoot IMRT is described. This method is based on the Monte Carlo code EGSnrc/BEAMnrc. The Monte Carlo model of the head of the linear accelerator is validated by comparison of simulated and measured dose distributions in a large range of situations. The beamlets of an IMRT treatment plan are calculated individually by Monte Carlo, in the exact geometry of the treatment. Then, the dose distributions of the beamlets are converted in absorbed dose to water per monitor unit. The dose of the whole treatment in each volume element (voxel) can be expressed through a linear matrix equation of the monitor units and dose per monitor unit of every beamlets. This equation is solved by a Non-Negative Least Sqvare fif algorithm (NNLS). However, not every voxels inside the patient volume can be used in order to solve this equation, because of computer limitations. Several ways of voxel selection have been tested and the best choice consists in using voxels inside the Planning Target Volume (PTV). The method presented in this work was tested with eight clinical cases, which were representative of usual radiotherapy treatments. The monitor units obtained lead to clinically equivalent global dose distributions. Thus, this independent monitor unit calculation method for step-and-shoot IMRT is validated and can therefore be used in a clinical routine. It would be possible to consider applying a similar method for other treatment modalities, such as for instance tomotherapy or volumetric modulated arc therapy.
Resumo:
Notre progiciel PoweR vise à faciliter l'obtention ou la vérification des études empiriques de puissance pour les tests d'ajustement. En tant que tel, il peut être considéré comme un outil de calcul de recherche reproductible, car il devient très facile à reproduire (ou détecter les erreurs) des résultats de simulation déjà publiés dans la littérature. En utilisant notre progiciel, il devient facile de concevoir de nouvelles études de simulation. Les valeurs critiques et puissances de nombreuses statistiques de tests sous une grande variété de distributions alternatives sont obtenues très rapidement et avec précision en utilisant un C/C++ et R environnement. On peut même compter sur le progiciel snow de R pour le calcul parallèle, en utilisant un processeur multicœur. Les résultats peuvent être affichés en utilisant des tables latex ou des graphiques spécialisés, qui peuvent être incorporés directement dans vos publications. Ce document donne un aperçu des principaux objectifs et les principes de conception ainsi que les stratégies d'adaptation et d'extension.
Resumo:
Molecular dynamics (MD) simulations have been used to study the dynamical and time-averaged characteristics of the DNA triple helix d(T)10âd(A)10âd(T)10. The structures sampled during the trajectory resemble closely the B-type model for the DNA triplex proposed on the basis of NMR data, although there are some subtle differences. Alternative P- and A-type conformations for the triplex, suggested from X-ray experiments, are not predicted to contribute significantly to the structure of the DNA triplex in solution. Comparison with the best available experimental data supports the correctnes of the MD-generated structures. The analysis of the collected data gives a detailed picture of the characteristics of triple-helix DNA. A new and interesting pattern of hydration, specific for triplex DNA, is an important observation. The results suggest that molecular dynamics can be useful for the study of novel nucleic acid structures.
Resumo:
In recent years, we have experienced increasing interest in the understanding of the physical properties of collisionless plasmas, mostly because of the large number of astrophysical environments (e. g. the intracluster medium (ICM)) containing magnetic fields that are strong enough to be coupled with the ionized gas and characterized by densities sufficiently low to prevent the pressure isotropization with respect to the magnetic line direction. Under these conditions, a new class of kinetic instabilities arises, such as firehose and mirror instabilities, which have been studied extensively in the literature. Their role in the turbulence evolution and cascade process in the presence of pressure anisotropy, however, is still unclear. In this work, we present the first statistical analysis of turbulence in collisionless plasmas using three-dimensional numerical simulations and solving double-isothermal magnetohydrodynamic equations with the Chew-Goldberger-Low laws closure (CGL-MHD). We study models with different initial conditions to account for the firehose and mirror instabilities and to obtain different turbulent regimes. We found that the CGL-MHD subsonic and supersonic turbulences show small differences compared to the MHD models in most cases. However, in the regimes of strong kinetic instabilities, the statistics, i.e. the probability distribution functions (PDFs) of density and velocity, are very different. In subsonic models, the instabilities cause an increase in the dispersion of density, while the dispersion of velocity is increased by a large factor in some cases. Moreover, the spectra of density and velocity show increased power at small scales explained by the high growth rate of the instabilities. Finally, we calculated the structure functions of velocity and density fluctuations in the local reference frame defined by the direction of magnetic lines. The results indicate that in some cases the instabilities significantly increase the anisotropy of fluctuations. These results, even though preliminary and restricted to very specific conditions, show that the physical properties of turbulence in collisionless plasmas, as those found in the ICM, may be very different from what has been largely believed.
Resumo:
Some antimicrobial peptides have a broad spectrum of action against many different kinds of microorganisms. Gomesin and protegrin-1 are examples of such antimicrobial peptides, and they were studied by molecular dynamics in this research. Both have a beta-hairpin conformation stabilized by two disulfide bridges and are active against Gram-positive and Gram-negative bacteria, as well as fungi. In this study, the role of the disulfide bridge in the maintenance of the tertiary peptide structure of protegrin-1 and gomesin is analyzed by the structural characteristics of these peptides and two of their respective variants, gomy4 and proty4, in which the four cysteines are replaced by four tyrosine residues. The absence of disulfide bridges in gomy4 and proty4 is compensated by overall reinforcement of the original hydrogen bonds and extra attractive interactions between the aromatic rings of the tyrosine residues. The net effects on the variants with respect to the corresponding natural peptides are: i) maintenance of the original beta-hairpin conformation, with great structural similarities between the mutant and the corresponding natural peptide; ii) combination of positive F and. Ramachandran angles within the hairpin head region with a qualitative change to a combination of positive (F) and negative (.) angles, and iii) significant increase in structural flexibility. Experimental facts about the antimicrobial activity of the gomesin and protegrin-1 variants have also been established here, in the hope that the detailed data provided in the present study may be useful for understanding the mechanism of action of these peptides.
Resumo:
The Perseus galaxy cluster is known to present multiple and misaligned pairs of cavities seen in X-rays, as well as twisted kiloparsec-scale jets at radio wavelengths; both morphologies suggest that the active galactic nucleus (AGN) jet is subject to precession. In this work, we performed three-dimensional hydrodynamical simulations of the interaction between a precessing AGN jet and the warm intracluster medium plasma, whose dynamics are coupled to a Navarro-Frenk-White dark matter gravitational potential. The AGN jet inflates cavities that become buoyantly unstable and rise up out of the cluster core. We found that under certain circumstances precession can originate multiple pairs of bubbles. For the physical conditions in the Perseus cluster, multiple pairs of bubbles are obtained for a jet precession opening angle >40 degrees acting for at least three precession periods, reproducing both radio and X-ray maps well. Based on such conditions, assuming that the Bardeen-Peterson effect is dominant, we studied the evolution of the precession opening angle of this system. We were able to constrain the ratio between the accretion disk and the black hole angular momenta as 0.7-1.4. We were also able to constrain the present precession angle to 30 degrees-40 degrees, as well as the approximate age of the inflated bubbles to 100-150 Myr.
Resumo:
Discrete element method (DEM) modeling is used in parallel with a model for coalescence of deformable surface wet granules. This produces a method capable of predicting both collision rates and coalescence efficiencies for use in derivation of an overall coalescence kernel. These coalescence kernels can then be used in computationally efficient meso-scale models such as population balance equation (PBE) models. A soft-sphere DEM model using periodic boundary conditions and a unique boxing scheme was utilized to simulate particle flow inside a high-shear mixer. Analysis of the simulation results provided collision frequency, aggregation frequency, kinetic energy, coalescence efficiency and compaction rates for the granulation process. This information can be used to bridge the gap in multi-scale modeling of granulation processes between the micro-scale DEM/coalescence modeling approach and a meso-scale PBE modeling approach.
Resumo:
Dimensionless spray flux Ψa is a dimensionless group that characterises the three most important variables in liquid dispersion: flowrate, drop size and powder flux through the spray zone. In this paper, the Poisson distribution was used to generate analytical solutions for the proportion of nuclei formed from single drops (fsingle) and the fraction of the powder surface covered by drops (fcovered) as a function of Ψa. Monte-Carlo simulations were performed to simulate the spray zone and investigate how Ψa, fsingle and fcovered are related. The Monte-Carlo data was an excellent match with analytical solutions of fcovered and fsingle as a function of Ψa. At low Ψa, the proportion of the surface covered by drops (fcovered) was equal to Ψa. As Ψa increases, drop overlap becomes more dominant and the powder surface coverage levels off. The proportion of nuclei formed from single drops (fsingle) falls exponentially with increasing Ψa. In the ranges covered, these results were independent of drop size, number of drops, drop size distribution (mono-sized, bimodal and trimodal distributions), and the uniformity of the spray. Experimental data of nuclei size distributions as a function of spray flux were fitted to the analytical solution for fsingle by defining a cutsize for single drop nuclei. The fitted cutsizes followed the spray drop sizes suggesting that the method is robust and that the cutsize does indicate the transition size between single drop and agglomerate nuclei. This demonstrates that the nuclei distribution is determined by the dimensionless spray flux and the fraction of drop controlled nuclei can be calculated analytically in advance.
Resumo:
A technique to simulate the grand canonical ensembles of interacting Bose gases is presented. Results are generated for many temperatures by averaging over energy-weighted stochastic paths, each corresponding to a solution of coupled Gross-Pitaevskii equations with phase noise. The stochastic gauge method used relies on an off-diagonal coherent-state expansion, thus taking into account all quantum correlations. As an example, the second-order spatial correlation function and momentum distribution for an interacting 1D Bose gas are calculated.
Resumo:
The quantum trajectories method is illustrated for the resonance fluorescence of a two-level atom driven by a multichromatic field. We discuss the method for the time evolution of the fluorescence intensity in the presence of bichromatic and trichromatic driving fields. We consider the special case wherein one multichromatic field component is strong and resonant with the atomic transition whereas the other components are much weaker and arbitrarily detuned from the atomic resonance. We find that the phase-dependent modulations of the Rabi oscillations, recently observed experimentally [Q. Wu, D. J. Gauthier, and T. W. Mossberg, Phys. Rev. A 49, R1519 (1994)] for the special case when the weaker component of a bichromatic driving field is detuned from the atomic resonance by the strong-field Rabi frequency, appear also for detunings close to the subharmonics of the Rabi frequency. Furthermore, we show that for the atom initially prepared in one of the dressed states of the strong field component the modulations are not sensitive to the phase. We extend the calculations to the case of a trichromatic driving field and find that apart from the modulations of the amplitude there is a modulation of the frequency of the Rabi oscillations. Moreover, the time evolution of the fluorescence intensity depends on the phase regardless of the initial conditions and a phase-dependent suppression of the Rabi oscillations can be observed when the sideband fields are tuned to the subharmonics of the strong-field Rabi frequency. [S1050-2947(98)03501-X].
Resumo:
Molecular dynamics simulations of carbon atom depositions are used to investigate energy diffusion from the impact zone. A modified Stillinger-Weber potential models the carbon interactions for both sp2 and sp3 bonding. Simulations were performed on 50 eV carbon atom depositions onto the (111) surface of a 3.8 x 3.4 x 1.0 nm diamond slab containing 2816 atoms in 11 layers of 256 atoms each. The bottom layer was thermostated to 300 K. At every 100th simulation time step (27 fs), the average local kinetic energy, and hence local temperature, is calculated. To do this the substrate is divided into a set of 15 concentric hemispherical zones, each of thickness one atomic diameter (0.14 nm) and centered on the impact point. A 50-eV incident atom heats the local impact zone above 10 000 K. After the initial large transient (200 fs) the impact zone has cooled below 3000 K, then near 1000 K by 1 ps. Thereafter the temperature profile decays approximately as described by diffusion theory, perturbed by atomic scale fluctuations. A continuum model of classical energy transfer is provided by the traditional thermal diffusion equation. The results show that continuum diffusion theory describes well energy diffusion in low energy atomic deposition processes, at distance and time scales larger than 1.5 nm and 1-2 ps, beyond which the energy decays essentially exponentially. (C) 1998 Published by Elsevier Science S.A. All rights reserved.