976 resultados para Simulated annealing (Mathematics)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Elétrica - FEIS

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Evolutionary computation is an effective tool for solving optimization problems. However, its significant computational demand has limited its real-time and on-line applications, especially in embedded systems with limited computing resources, e.g., mobile robots. Heuristic methods such as the genetic algorithm (GA) based approaches have been investigated for robot path planning in dynamic environments. However, research on the simulated annealing (SA) algorithm, another popular evolutionary computation algorithm, for dynamic path planning is still limited mainly due to its high computational demand. An enhanced SA approach, which integrates two additional mathematical operators and initial path selection heuristics into the standard SA, is developed in this work for robot path planning in dynamic environments with both static and dynamic obstacles. It improves the computing performance of the standard SA significantly while giving an optimal or near-optimal robot path solution, making its real-time and on-line applications possible. Using the classic and deterministic Dijkstra algorithm as a benchmark, comprehensive case studies are carried out to demonstrate the performance of the enhanced SA and other SA algorithms in various dynamic path planning scenarios.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diamonds are known for both their beauty and their durability. Jefferson National Lab in Newport News, VA has found a way to utilize the diamond's strength to view the beauty of the inside of the atomic nucleus with the hopes of finding exotic forms of matter. By firing very fast electrons at a diamond sheet no thicker than a human hair, high energy particles of light known as photons are produced with a high degree of polarization that can illuminate the constituents of the nucleus known as quarks. The University of Connecticut Nuclear Physics group has responsibility for crafting these extremely thin, high quality diamond wafers. These wafers must be cut from larger stones that are about the size of a human finger, and then carefully machined down to the final thickness. The thinning of these diamonds is extremely challenging, as the diamond's greatest strength also becomes its greatest weakness. The Connecticut Nuclear Physics group has developed a novel technique to assist industrial partners in assessing the quality of the final machining steps, using a technique based on laser interferometry. The images of the diamond surface produced by the interferometer encode the thickness and shape of the diamond surface in a complex way that requires detailed analysis to extract. We have developed a novel software application to analyze these images based on the method of simulated annealing. Being able to image the surface of these diamonds without requiring costly X-ray diffraction measurements allows rapid feedback to the industrial partners as they refine their thinning techniques. Thus, by utilizing a material found to be beautiful by many, the beauty of nature can be brought more clearly into view.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mobile robots are widely used in many industrial fields. Research on path planning for mobile robots is one of the most important aspects in mobile robots research. Path planning for a mobile robot is to find a collision-free route, through the robot’s environment with obstacles, from a specified start location to a desired goal destination while satisfying certain optimization criteria. Most of the existing path planning methods, such as the visibility graph, the cell decomposition, and the potential field are designed with the focus on static environments, in which there are only stationary obstacles. However, in practical systems such as Marine Science Research, Robots in Mining Industry, and RoboCup games, robots usually face dynamic environments, in which both moving and stationary obstacles exist. Because of the complexity of the dynamic environments, research on path planning in the environments with dynamic obstacles is limited. Limited numbers of papers have been published in this area in comparison with hundreds of reports on path planning in stationary environments in the open literature. Recently, a genetic algorithm based approach has been introduced to plan the optimal path for a mobile robot in a dynamic environment with moving obstacles. However, with the increase of the number of the obstacles in the environment, and the changes of the moving speed and direction of the robot and obstacles, the size of the problem to be solved increases sharply. Consequently, the performance of the genetic algorithm based approach deteriorates significantly. This motivates the research of this work. This research develops and implements a simulated annealing algorithm based approach to find the optimal path for a mobile robot in a dynamic environment with moving obstacles. The simulated annealing algorithm is an optimization algorithm similar to the genetic algorithm in principle. However, our investigation and simulations have indicated that the simulated annealing algorithm based approach is simpler and easier to implement. Its performance is also shown to be superior to that of the genetic algorithm based approach in both online and offline processing times as well as in obtaining the optimal solution for path planning of the robot in the dynamic environment. The first step of many path planning methods is to search an initial feasible path for the robot. A commonly used method for searching the initial path is to randomly pick up some vertices of the obstacles in the search space. This is time consuming in both static and dynamic path planning, and has an important impact on the efficiency of the dynamic path planning. This research proposes a heuristic method to search the feasible initial path efficiently. Then, the heuristic method is incorporated into the proposed simulated annealing algorithm based approach for dynamic robot path planning. Simulation experiments have shown that with the incorporation of the heuristic method, the developed simulated annealing algorithm based approach requires much shorter processing time to get the optimal solutions in the dynamic path planning problem. Furthermore, the quality of the solution, as characterized by the length of the planned path, is also improved with the incorporated heuristic method in the simulated annealing based approach for both online and offline path planning.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Improving energy efficiency has become increasingly important in data centers in recent years to reduce the rapidly growing tremendous amounts of electricity consumption. The power dissipation of the physical servers is the root cause of power usage of other systems, such as cooling systems. Many efforts have been made to make data centers more energy efficient. One of them is to minimize the total power consumption of these servers in a data center through virtual machine consolidation, which is implemented by virtual machine placement. The placement problem is often modeled as a bin packing problem. Due to the NP-hard nature of the problem, heuristic solutions such as First Fit and Best Fit algorithms have been often used and have generally good results. However, their performance leaves room for further improvement. In this paper we propose a Simulated Annealing based algorithm, which aims at further improvement from any feasible placement. This is the first published attempt of using SA to solve the VM placement problem to optimize the power consumption. Experimental results show that this SA algorithm can generate better results, saving up to 25 percentage more energy than First Fit Decreasing in an acceptable time frame.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Railway crew scheduling problem is the process of allocating train services to the crew duties based on the published train timetable while satisfying operational and contractual requirements. The problem is restricted by many constraints and it belongs to the class of NP-hard. In this paper, we develop a mathematical model for railway crew scheduling with the aim of minimising the number of crew duties by reducing idle transition times. Duties are generated by arranging scheduled trips over a set of duties and sequentially ordering the set of trips within each of duties. The optimisation model includes the time period of relief opportunities within which a train crew can be relieved at any relief point. Existing models and algorithms usually only consider relieving a crew at the beginning of the interval of relief opportunities which may be impractical. This model involves a large number of decision variables and constraints, and therefore a hybrid constructive heuristic with the simulated annealing search algorithm is applied to yield an optimal or near-optimal schedule. The performance of the proposed algorithms is evaluated by applying computational experiments on randomly generated test instances. The results show that the proposed approaches obtain near-optimal solutions in a reasonable computational time for large-sized problems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Distributed systems are widely used for solving large-scale and data-intensive computing problems, including all-to-all comparison (ATAC) problems. However, when used for ATAC problems, existing computational frameworks such as Hadoop focus on load balancing for allocating comparison tasks, without careful consideration of data distribution and storage usage. While Hadoop-based solutions provide users with simplicity of implementation, their inherent MapReduce computing pattern does not match the ATAC pattern. This leads to load imbalances and poor data locality when Hadoop's data distribution strategy is used for ATAC problems. Here we present a data distribution strategy which considers data locality, load balancing and storage savings for ATAC computing problems in homogeneous distributed systems. A simulated annealing algorithm is developed for data distribution and task scheduling. Experimental results show a significant performance improvement for our approach over Hadoop-based solutions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We develop extensions of the Simulated Annealing with Multiplicative Weights (SAMW) algorithm that proposed a method of solution of Finite-Horizon Markov Decision Processes (FH-MDPs). The extensions developed are in three directions: a) Use of the dynamic programming principle in the policy update step of SAMW b) A two-timescale actor-critic algorithm that uses simulated transitions alone, and c) Extending the algorithm to the infinite-horizon discounted-reward scenario. In particular, a) reduces the storage required from exponential to linear in the number of actions per stage-state pair. On the faster timescale, a 'critic' recursion performs policy evaluation while on the slower timescale an 'actor' recursion performs policy improvement using SAMW. We give a proof outlining convergence w.p. 1 and show experimental results on two settings: semiconductor fabrication and flow control in communication networks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an efficient Simulated Annealing with valid solution mechanism for finding an optimum conflict-free transmission schedule for a broadcast radio network. This is known as a Broadcast Scheduling Problem (BSP) and shown as an NP-complete problem, in earlier studies. Because of this NP-complete nature, earlier studies used genetic algorithms, mean field annealing, neural networks, factor graph and sum product algorithm, and sequential vertex coloring algorithm to obtain the solution. In our study, a valid solution mechanism is included in simulated annealing. Because of this inclusion, we are able to achieve better results even for networks with 100 nodes and 300 links. The results obtained using our methodology is compared with all the other earlier solution methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a general methodology for the synthesis of the external boundary of the workspaces of a planar manipulator with arbitrary topology. Both the desired workspace and the manipulator workspaces are identified by their boundaries and are treated as simple closed polygons. The paper introduces the concept of best match configuration and shows that the corresponding transformation can be obtained by using the concept of shape normalization available in image processing literature. Introduction of the concept of shape in workspace synthesis allows highly accurate synthesis with fewer numbers of design variables. This paper uses a new global property based vector representation for the shape of the workspaces which is computationally efficient because six out of the seven elements of this vector are obtained as a by-product of the shape normalization procedure. The synthesis of workspaces is formulated as an optimization problem where the distance between the shape vector of the desired workspace and that of the workspace of the manipulator at hand are minimized by changing the dimensional parameters of the manipulator. In view of the irregular nature of the error manifold, the statistical optimization procedure of simulated annealing has been used. A number of worked-out examples illustrate the generality and efficiency of the present method. (C) 1998 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Part classification and coding is still considered as laborious and time-consuming exercise. Keeping in view, the crucial role, which it plays, in developing automated CAPP systems, the attempts have been made in this article to automate a few elements of this exercise using a shape analysis model. In this study, a 24-vector directional template is contemplated to represent the feature elements of the parts (candidate and prototype). Various transformation processes such as deformation, straightening, bypassing, insertion and deletion are embedded in the proposed simulated annealing (SA)-like hybrid algorithm to match the candidate part with their prototype. For a candidate part, searching its matching prototype from the information data is computationally expensive and requires large search space. However, the proposed SA-like hybrid algorithm for solving the part classification problem considerably minimizes the search space and ensures early convergence of the solution. The application of the proposed approach is illustrated by an example part. The proposed approach is applied for the classification of 100 candidate parts and their prototypes to demonstrate the effectiveness of the algorithm. (C) 2003 Elsevier Science Ltd. All rights reserved.