948 resultados para Similarity Query


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Music similarity query based on acoustic content is becoming important with the ever-increasing growth of the music information from emerging applications such as digital libraries and WWW. However, relative techniques are still in their infancy and much less than satisfactory. In this paper, we present a novel index structure, called Composite Feature tree, CF-tree, to facilitate efficient content-based music search adopting multiple musical features. Before constructing the tree structure, we use PCA to transform the extracted features into a new space sorted by the importance of acoustic features. The CF-tree is a balanced multi-way tree structure where each level represents the data space at different dimensionalities. The PCA transformed data and reduced dimensions in the upper levels can alleviate suffering from dimensionality curse. To accurately mimic human perception, an extension, named CF+-tree, is proposed, which further applies multivariable regression to determine the weight of each individual feature. We conduct extensive experiments to evaluate the proposed structures against state-of-art techniques. The experimental results demonstrate superiority of our technique.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

An important feature of a database management systems (DBMS) is its client/server architecture, where managing shared memory among the clients and the server is always an tough issue. However, similarity queries are specially sensitive to this kind of architecture, since the answer sizes vary widely. Usually, the answers of similarity query are fully processed to be sent in full to the user, who often is interested in just parts of the answer, e.g. just few elements closer or farther to the query reference. Compelling the DBMS to retrieve the full answer, further ignoring its majority is at least a waste of server processing power. Paging the answer is a technique that splits the answer onto several pages, following client requests. Despite the success of paging on traditional queries, little work has been done to support it in similarity queries. In this work, we present a technique that not only provides paging in similarity range or k-nearest neighbor queries, but also supports them in two variations: the forward similarity query and the backward similarity query. They return elements either increasingly farther of increasingly closer to the query reference. The reported experiments show that, depending on the proportion of the interesting part over the full answer, both techniques allow answering queries much faster than it is obtained in the non-paged way. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

With the rapid increase in both centralized video archives and distributed WWW video resources, content-based video retrieval is gaining its importance. To support such applications efficiently, content-based video indexing must be addressed. Typically, each video is represented by a sequence of frames. Due to the high dimensionality of frame representation and the large number of frames, video indexing introduces an additional degree of complexity. In this paper, we address the problem of content-based video indexing and propose an efficient solution, called the Ordered VA-File (OVA-File) based on the VA-file. OVA-File is a hierarchical structure and has two novel features: 1) partitioning the whole file into slices such that only a small number of slices are accessed and checked during k Nearest Neighbor (kNN) search and 2) efficient handling of insertions of new vectors into the OVA-File, such that the average distance between the new vectors and those approximations near that position is minimized. To facilitate a search, we present an efficient approximate kNN algorithm named Ordered VA-LOW (OVA-LOW) based on the proposed OVA-File. OVA-LOW first chooses possible OVA-Slices by ranking the distances between their corresponding centers and the query vector, and then visits all approximations in the selected OVA-Slices to work out approximate kNN. The number of possible OVA-Slices is controlled by a user-defined parameter delta. By adjusting delta, OVA-LOW provides a trade-off between the query cost and the result quality. Query by video clip consisting of multiple frames is also discussed. Extensive experimental studies using real video data sets were conducted and the results showed that our methods can yield a significant speed-up over an existing VA-file-based method and iDistance with high query result quality. Furthermore, by incorporating temporal correlation of video content, our methods achieved much more efficient performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the goals in the field of Music Information Retrieval is to obtain a measure of similarity between two musical recordings. Such a measure is at the core of automatic classification, query, and retrieval systems, which have become a necessity due to the ever increasing availability and size of musical databases. This paper proposes a method for calculating a similarity distance between two music signals. The method extracts a set of features from the audio recordings, models the features, and determines the distance between models. While further work is needed, preliminary results show that the proposed method has the potential to be used as a similarity measure for musical signals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes Question Waves, an algorithm that can be applied to social search protocols, such as Asknext or Sixearch. In this model, the queries are propagated through the social network, with faster propagation through more trustable acquaintances. Question Waves uses local information to make decisions and obtain an answer ranking. With Question Waves, the answers that arrive first are the most likely to be relevant, and we computed the correlation of answer relevance with the order of arrival to demonstrate this result. We obtained correlations equivalent to the heuristics that use global knowledge, such as profile similarity among users or the expertise value of an agent. Because Question Waves is compatible with the social search protocol Asknext, it is possible to stop a search when enough relevant answers have been found; additionally, stopping the search early only introduces a minimal risk of not obtaining the best possible answer. Furthermore, Question Waves does not require a re-ranking algorithm because the results arrive sorted

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La diversification des résultats de recherche (DRR) vise à sélectionner divers documents à partir des résultats de recherche afin de couvrir autant d’intentions que possible. Dans les approches existantes, on suppose que les résultats initiaux sont suffisamment diversifiés et couvrent bien les aspects de la requête. Or, on observe souvent que les résultats initiaux n’arrivent pas à couvrir certains aspects. Dans cette thèse, nous proposons une nouvelle approche de DRR qui consiste à diversifier l’expansion de requête (DER) afin d’avoir une meilleure couverture des aspects. Les termes d’expansion sont sélectionnés à partir d’une ou de plusieurs ressource(s) suivant le principe de pertinence marginale maximale. Dans notre première contribution, nous proposons une méthode pour DER au niveau des termes où la similarité entre les termes est mesurée superficiellement à l’aide des ressources. Quand plusieurs ressources sont utilisées pour DER, elles ont été uniformément combinées dans la littérature, ce qui permet d’ignorer la contribution individuelle de chaque ressource par rapport à la requête. Dans la seconde contribution de cette thèse, nous proposons une nouvelle méthode de pondération de ressources selon la requête. Notre méthode utilise un ensemble de caractéristiques qui sont intégrées à un modèle de régression linéaire, et génère à partir de chaque ressource un nombre de termes d’expansion proportionnellement au poids de cette ressource. Les méthodes proposées pour DER se concentrent sur l’élimination de la redondance entre les termes d’expansion sans se soucier si les termes sélectionnés couvrent effectivement les différents aspects de la requête. Pour pallier à cet inconvénient, nous introduisons dans la troisième contribution de cette thèse une nouvelle méthode pour DER au niveau des aspects. Notre méthode est entraînée de façon supervisée selon le principe que les termes reliés doivent correspondre au même aspect. Cette méthode permet de sélectionner des termes d’expansion à un niveau sémantique latent afin de couvrir autant que possible différents aspects de la requête. De plus, cette méthode autorise l’intégration de plusieurs ressources afin de suggérer des termes d’expansion, et supporte l’intégration de plusieurs contraintes telles que la contrainte de dispersion. Nous évaluons nos méthodes à l’aide des données de ClueWeb09B et de trois collections de requêtes de TRECWeb track et montrons l’utilité de nos approches par rapport aux méthodes existantes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Modern database applications are increasingly employing database management systems (DBMS) to store multimedia and other complex data. To adequately support the queries required to retrieve these kinds of data, the DBMS need to answer similarity queries. However, the standard structured query language (SQL) does not provide effective support for such queries. This paper proposes an extension to SQL that seamlessly integrates syntactical constructions to express similarity predicates to the existing SQL syntax and describes the implementation of a similarity retrieval engine that allows posing similarity queries using the language extension in a relational DBM. The engine allows the evaluation of every aspect of the proposed extension, including the data definition language and data manipulation language statements, and employs metric access methods to accelerate the queries. Copyright (c) 2008 John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hologram quantitative structure-activity relationships (HQSAR) were applied to a data set of 41 cruzain inhibitors. The best HQSAR model (Q(2) = 0.77; R-2 = 0.90) employing Surflex-Sim, as training and test sets generator, was obtained using atoms, bonds, and connections as fragment distinctions and 4-7 as fragment size. This model was then used to predict the potencies of 12 test set compounds, giving satisfactory predictive R-2 value of 0,88. The contribution maps obtained from the best HQSAR model are in agreement with the biological activities of the study compounds. The Trypanosoma cruzi cruzain shares high similarity with the mammalian homolog cathepsin L. The selectivity toward cruzam was checked by a database of 123 compounds, which corresponds to the 41 cruzain inhibitors used in the HQSAR model development plus 82 cathepsin L inhibitors. We screened these compounds by ROCS (Rapid Overlay of Chemical Structures), a Gaussian-shape volume overlap filter that can rapidly identify shapes that match the query molecule. Remarkably, ROCS was able to rank the first 37 hits as being only cruzain inhibitors. In addition, the area under the curve (AUC) obtained with ROCS was 0.96, indicating that the method was very efficient to distinguishing between cruzain and cathepsin L inhibitors. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we present a novel approach to perform similarity queries over medical images, maintaining the semantics of a given query posted by the user. Content-based image retrieval systems relying on relevance feedback techniques usually request the users to label relevant/irrelevant images. Thus, we present a highly effective strategy to survey user profiles, taking advantage of such labeling to implicitly gather the user perceptual similarity. The profiles maintain the settings desired for each user, allowing tuning of the similarity assessment, which encompasses the dynamic change of the distance function employed through an interactive process. Experiments on medical images show that the method is effective and can improve the decision making process during analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Effective techniques for organizing and visualizing large image collections are in growing demand as visual search gets increasingly popular. iMap is a treemap representation for visualizing and navigating image search and clustering results based on the evaluation of image similarity using both visual and textual information. iMap not only makes effective use of available display area to arrange images but also maintains stable update when images are inserted or removed during the query. A key challenge of using iMap lies in the difficult to follow and track the changes when updating the image arrangement as the query image changes. For many information visualization applications, showing the transition when interacting with the data is critically important as it can help users better perceive the changes and understand the underlying data. This work investigates the effectiveness of animated transition in a tiled image layout where the spiral arrangement of the images is based on their similarity. Three aspects of animated transition are considered, including animation steps, animation actions, and flying paths. Exploring and weighting the advantages and disadvantages of different methods for each aspect and in conjunction with the characteristics of the spiral image layout, we present an integrated solution, called AniMap, for animating the transition from an old layout to a new layout when a different image is selected as the query image. To smooth the animation and reduce the overlap among images during the transition, we explore different factors that might have an impact on the animation and propose our solution accordingly. We show the effectiveness of our animated transition solution by demonstrating experimental results and conducting a comparative user study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In April 2009, Google Images added a filter for narrowing search results by colour. Several other systems for searching image databases by colour were also released around this time. These colour-based image retrieval systems enable users to search image databases either by selecting colours from a graphical palette (i.e., query-by-colour), by drawing a representation of the colour layout sought (i.e., query-by-sketch), or both. It was comments left by readers of online articles describing these colour-based image retrieval systems that provided us with the inspiration for this research. We were surprised to learn that the underlying query-based technology used in colour-based image retrieval systems today remains remarkably similar to that of systems developed nearly two decades ago. Discovering this ageing retrieval approach, as well as uncovering a large user demographic requiring image search by colour, made us eager to research more effective approaches for colour-based image retrieval. In this thesis, we detail two user studies designed to compare the effectiveness of systems adopting similarity-based visualisations, query-based approaches, or a combination of both, for colour-based image retrieval. In contrast to query-based approaches, similarity-based visualisations display and arrange database images so that images with similar content are located closer together on screen than images with dissimilar content. This removes the need for queries, as users can instead visually explore the database using interactive navigation tools to retrieve images from the database. As we found existing evaluation approaches to be unreliable, we describe how we assessed and compared systems adopting similarity-based visualisations, query-based approaches, or both, meaningfully and systematically using our Mosaic Test - a user-based evaluation approach in which evaluation study participants complete an image mosaic of a predetermined target image using the colour-based image retrieval system under evaluation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PowerAqua is a Question Answering system, which takes as input a natural language query and is able to return answers drawn from relevant semantic resources found anywhere on the Semantic Web. In this paper we provide two novel contributions: First, we detail a new component of the system, the Triple Similarity Service, which is able to match queries effectively to triples found in different ontologies on the Semantic Web. Second, we provide a first evaluation of the system, which in addition to providing data about PowerAqua's competence, also gives us important insights into the issues related to using the Semantic Web as the target answer set in Question Answering. In particular, we show that, despite the problems related to the noisy and incomplete conceptualizations, which can be found on the Semantic Web, good results can already be obtained.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

User queries over image collections, based on semantic similarity, can be processed in several ways. In this paper, we propose to reuse the rules produced by rule-based classifiers in their recognition models as query pattern definitions for searching image collections.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Geographic Data Warehouses (GDW) are one of the main technologies used in decision-making processes and spatial analysis, and the literature proposes several conceptual and logical data models for GDW. However, little effort has been focused on studying how spatial data redundancy affects SOLAP (Spatial On-Line Analytical Processing) query performance over GDW. In this paper, we investigate this issue. Firstly, we compare redundant and non-redundant GDW schemas and conclude that redundancy is related to high performance losses. We also analyze the issue of indexing, aiming at improving SOLAP query performance on a redundant GDW. Comparisons of the SB-index approach, the star-join aided by R-tree and the star-join aided by GiST indicate that the SB-index significantly improves the elapsed time in query processing from 25% up to 99% with regard to SOLAP queries defined over the spatial predicates of intersection, enclosure and containment and applied to roll-up and drill-down operations. We also investigate the impact of the increase in data volume on the performance. The increase did not impair the performance of the SB-index, which highly improved the elapsed time in query processing. Performance tests also show that the SB-index is far more compact than the star-join, requiring only a small fraction of at most 0.20% of the volume. Moreover, we propose a specific enhancement of the SB-index to deal with spatial data redundancy. This enhancement improved performance from 80 to 91% for redundant GDW schemas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Microarray techniques have become an important tool to the investigation of genetic relationships and the assignment of different phenotypes. Since microarrays are still very expensive, most of the experiments are performed with small samples. This paper introduces a method to quantify dependency between data series composed of few sample points. The method is used to construct gene co-expression subnetworks of highly significant edges. Results: The results shown here are for an adapted subset of a Saccharomyces cerevisiae gene expression data set with low temporal resolution and poor statistics. The method reveals common transcription factors with a high confidence level and allows the construction of subnetworks with high biological relevance that reveals characteristic features of the processes driving the organism adaptations to specific environmental conditions. Conclusion: Our method allows a reliable and sophisticated analysis of microarray data even under severe constraints. The utilization of systems biology improves the biologists ability to elucidate the mechanisms underlying celular processes and to formulate new hypotheses.