944 resultados para Simetria discreta
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Física - IGCE
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Resumo:
Nete trabalho é apresentada uma solução analílica para o problema de ordenada discreta unidimensional e multigrupo de transporle de neutrons em simetria planar. A idéia básica da formulação proposta consiste na aplicação da transformada de Laplace na equação de ordenada discreta. Para a solução do sistema linear resultante, uma solução explícila para a matriz lnversa é estabelecida. Dessa forma, o fluxo angular é obtido, por inversão analítica, em termos do fluxo angular em x=O. Essa formulação é aplicada a problemas de domínio finito e semi-infinito. No primeiro caso, os valores de fluxo angular desconhecidos na fronteira em x=O, são determinados a partir dos valores conhecidos do fluxo angular em x=a; no segundo caso é usada a condição de que o fluxo angular é limilado no infinito. Foram tratados problemas homogêneos e heterogêneos para a placa plana com um grupo de neutrons e multigrupo.O problema inverso, que consiste na determinação do fluxo incidente na fronteira a partir de valores do fluxo escalar no interior do domínio, também foi resolvido. Os resullados obtidos para os problemas acima descritos, apresentaram uma boa comparação com os resultados disponíveis na literatura.
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
A Coreia do Norte acaba de passar por nova sucessão, com um líder jovem, o que para analistas representa ausência de mudanças e esgotamento do regime. Enquanto as disputas de poder interno e as crises militares externas parecem sinalizar continuidade, e que foram iniciadas algumas transformações importantes. O regime impulsiona a modernização da defesa, enquanto recoloca o Partido como ator relevante, definindo o desenvolvimento econômico como vetor. Mas a modernização em curso prossegue com a tradicional diplomacia de risco que parece descartar a ideia de reforma, conservando a essência do regime.
Resumo:
A presente investigação teve como objectivo estudar a representação social da psicanálise perante os cidadãos portugueses. Utilizou-se um Questionário sóciodemográfico sobre a Percepção da Representação Social da Psicanálise. Foi analisada uma amostra de conveniência, constituída por 275 indivíduos (cidadãos portugueses), 167 mulheres e 108 homens, com idade média de 31.79. Concluiu se que os portugueses já ouviram falar da psicanálise, mas não sabem ao certo o que ela é. Recorrem pouco ao tratamento Psicanalítico, confundindo-o muito frequentemente com tratamento psicológico, o que parece indiciar alguma confusão entre a representação social de Psicanálise e Psicologia.
Resumo:
Em um artigo famoso mas pouco compreendido, Lévi-Strauss define as noções de estrutura e de modelos, e afirma a importância dessas noções para as Ciências Sociais. Encontramos ali as noções de "grupo", de "estrutura topológica" e de "estrutura de ordem", a distinção entre "modelos mecânicos" e a de "modelos estatísticos", e uma classificação das Ciências Sociais (a História, a Sociologia, a Etnografia e a Etnologia) a partir dessas noções . Trata-se de "cientificismo" depois abandonado? Não, porque o uso dessas noções não somente permanece em sua obra posterior, como elas envolvem algumas das idéias mais básicas de Lévi-Strauss sobre as sociedades e seu movimento histórico. É verdade que Lévi-Strauss utiliza metaforicamente essas noções, de maneira que não adianta buscar nos seus textos as definições científicas para eles. Em vez disso, guiado por um esforço consciente de combinar sempre sensibilidade e razão, desrespeitando a moderna separação entre "ciências do espírito" e "ciências da natureza", Lévi-Strauss expressou alguns de seus temas centrais. Um deles é a importância das simetrias como propriedades comuns à natureza e à mente humana. O segundo é a visão da história como perda de simetrias. Esses temas encontram-se entremeados em suas análises de mitos e de parentesco, mas também no domínio da arte, na música e na pintura. Curiosamente, os projetos formulados por Lévi-Strauss no seu artigo sobre "A noção de estrutura em Antropologia", bem como no "Pensamento selvagem" e outros trabalhos no mesmo espírito, embora sejam vistos por muitos como ultrapassados, encontram-se em pleno vigor fora do mainstream da Antropologia, em disciplinas como a Neurociência, a Etnociência e a Teoria de sistemas auto-organizativos.
Resumo:
Dissertação de Mestrado, Matemática para Professores, 3 de Abril de 2014, Universidade dos Açores.
Resumo:
Neste trabalho estuda-se a geração de trajectórias em tempo real de um robô quadrúpede. As trajectórias podem dividir-se em duas componentes: rítmica e discreta. A componente rítmica das trajectórias é modelada por uma rede de oito osciladores acoplados, com simetria 4 2 Z Z . Cada oscilador é modelado matematicamente por um sistema de Equações Diferenciais Ordinárias. A referida rede foi proposta por Golubitsky, Stewart, Buono e Collins (1999, 2000), para gerar os passos locomotores de animais quadrúpedes. O trabalho constitui a primeira aplicação desta rede à geração de trajectórias de robôs quadrúpedes. A derivação deste modelo baseia-se na biologia, onde se crê que Geradores Centrais de Padrões de locomoção (CPGs), constituídos por redes neuronais, geram os ritmos associados aos passos locomotores dos animais. O modelo proposto gera soluções periódicas identificadas com os padrões locomotores quadrúpedes, como o andar, o saltar, o galopar, entre outros. A componente discreta das trajectórias dos robôs usa-se para ajustar a parte rítmica das trajectórias. Este tipo de abordagem é útil no controlo da locomoção em terrenos irregulares, em locomoção guiada (por exemplo, mover as pernas enquanto desempenha tarefas discretas para colocar as pernas em localizações específicas) e em percussão. Simulou-se numericamente o modelo de CPG usando o oscilador de Hopf para modelar a parte rítmica do movimento e um modelo inspirado no modelo VITE para modelar a parte discreta do movimento. Variou-se o parâmetro g e mediram-se a amplitude e a frequência das soluções periódicas identificadas com o passo locomotor quadrúpede Trot, para variação deste parâmetro. A parte discreta foi inserida na parte rítmica de duas formas distintas: (a) como um offset, (b) somada às equações que geram a parte rítmica. Os resultados obtidos para o caso (a), revelam que a amplitude e a frequência se mantêm constantes em função de g. Os resultados obtidos para o caso (b) revelam que a amplitude e a frequência aumentam até um determinado valor de g e depois diminuem à medida que o g aumenta, numa curva quase sinusoidal. A variação da amplitude das soluções periódicas traduz-se numa variação directamente proporcional na extensão do movimento do robô. A velocidade da locomoção do robô varia com a frequência das soluções periódicas, que são identificadas com passos locomotores quadrúpedes.
Resumo:
A geração de trajectórias de robôs em tempo real é uma tarefa muito complexa, não
existindo ainda um algoritmo que a permita resolver de forma eficaz. De facto, há
controladores eficientes para trajectórias previamente definidas, todavia, a adaptação a
variações imprevisíveis, como sendo terrenos irregulares ou obstáculos, constitui ainda um
problema em aberto na geração de trajectórias em tempo real de robôs.
Neste trabalho apresentam-se modelos de geradores centrais de padrões de locomoção
(CPGs), inspirados na biologia, que geram os ritmos locomotores num robô quadrúpede.
Os CPGs são modelados matematicamente por sistemas acoplados de células (ou
neurónios), sendo a dinâmica de cada célula dada por um sistema de equações diferenciais
ordinárias não lineares. Assume-se que as trajectórias dos robôs são constituídas por esta
parte rítmica e por uma parte discreta. A parte discreta pode ser embebida na parte rítmica,
(a.1) como um offset ou (a.2) adicionada às expressões rítmicas, ou (b) pode ser calculada
independentemente e adicionada exactamente antes do envio dos sinais para as articulações
do robô. A parte discreta permite inserir no passo locomotor uma perturbação, que poderá
estar associada à locomoção em terrenos irregulares ou à existência de obstáculos na
trajectória do robô. Para se proceder á análise do sistema com parte discreta, será variado o
parâmetro g. O parâmetro g, presente nas equações da parte discreta, representa o offset do
sinal após a inclusão da parte discreta.
Revê-se a teoria de bifurcação e simetria que permite a classificação das soluções
periódicas produzidas pelos modelos de CPGs com passos locomotores quadrúpedes. Nas
simulações numéricas, usam-se as equações de Morris-Lecar e o oscilador de Hopf como
modelos da dinâmica interna de cada célula para a parte rítmica. A parte discreta é
modelada por um sistema inspirado no modelo VITE. Medem-se a amplitude e a
frequência de dois passos locomotores para variação do parâmetro g, no intervalo [-5;5].
Consideram-se duas formas distintas de incluir a parte discreta na parte rítmica: (a) como
um (a.1) offset ou (a.2) somada nas expressões que modelam a parte rítmica, e (b) somada
ao sinal da parte rítmica antes de ser enviado às articulações do robô. No caso (a.1),
considerando o oscilador de Hopf como dinâmica interna das células, verifica-se que a amplitude e frequência se mantêm constantes para -5
Resumo:
Este estudo insere-se no âmbito da Geometria e pretende compreender a influência dos recursos didáticos utilizados no reconhecimento de propriedades e relações geométricas em figuras planas. De acordo com o objetivo do estudo formulamos duas questões orientadoras que se articulam entre si. - Que fragilidades apresentam os alunos, no reconhecimento de propriedades geométricas em figuras planas? - Que contributos resultam da utilização de materiais manipuláveis, na visualização espacial e investigação de propriedades geométricas? Com este estudo pretendemos reunir informação que contribua para aprofundar o conhecimento sobre o raciocínio geométrico dos alunos. Em termos metodológicos segue um método de investigação misto, com recolha de informação qualitativa de natureza interpretativa e quantitativa, na modalidade de estudo de caso. A recolha de dados foi realizada numa turma de 4.º ano do ensino básico onde foi desenvolvida a experiência didática. A informação recolhida resultou da observação direta e as fontes dos dados foram as produções dos alunos, as notas de campo, registos fotográficos, vídeo e áudio. A docente assumiu o papel de investigadora e orientadora das tarefas propostas aos alunos tendo estes desempenhado um papel ativo na construção do seu próprio conhecimento. Os resultados obtidos permitem evidenciar as fragilidades dos alunos no reconhecimento de propriedades geométricas de figuras planas em diferentes posições. Destacam ainda os contributos da utilização da Mira e do Tangram, no estudo da simetria e no desenvolvimento da visualização espacial para a concretização de aprendizagens concretas, motivadoras e significativas.
Resumo:
Dissertação de mestrado em Engenharia de Sistemas