966 resultados para Silver nano-particle
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Templated sol-gel encapsulation of surfactant-stabilised micelles containing metal precursor(s) with ultra-thin porous silica coating allows solvent extraction of organic based stabiliser from the composites in colloidal state hence a new method of preparing supported alloy catalysts using the inorganic silica-stabilised nano-sized, homogenously mixed, silver - platinum (Ag-Pt) colloidal particles is reported.
Resumo:
Purpose: To examine the ability of silver nano-particles to prevent the growth of Pseudomonas aeruginosa and Staphylococcus aureus in solution or when adsorbed into contact lenses. To examine the ability of silver nano-particles to prevent the growth of Acanthamoeba castellanii. ----- ----- Methods: Etafilcon A lenses were soaked in various concentrations of silver nano-particles. Bacterial cells were then exposed to these lenses, and numbers of viable cells on lens surface or in solution compared to etafilcon A lenses not soaked in silver. Acanthamoeba trophozoites were exposed to silver nano-particles and their ability to form tracks was examined. ----- ----- Results: Silver nano-particle containing lenses reduced bacterial viability and adhesion. There was a dose-dependent response curve, with 10 ppm or 20 ppm silver showing > 5 log reduction in bacterial viability in solution or on the lens surface. For Acanthamoeba, 20 ppm silver reduced the ability to form tracks by approximately 1 log unit. ----- ----- Conclusions: Silver nanoparticles are effective antimicrobial agents, and can reduce the ability of viable bacterial cells to colonise contact lenses once incorporated into the lens.----- ----- Resumen: Objetivos: Examinar la capacidad de las nanopartículas de plata para prevenir el crecimiento de Pseudomonas aeruginosa y Staphylococcus aureus en soluciones para lentes de contacto o cuando éstas las adsorben. Examinar la capacidad de las nanopartículas de plata para prevenir el crecimiento de Acanthamoeba castellanii.----- ----- Métodos: Se sumergieron lentes etafilcon A en diversas concentraciones de nanopartículas de plata. Las células bacterianas fueron posteriormente expuestas a dichas lentes, y se compararon cantidades de células viables en la superficie de la lente o en la solución con las presentes en lentes etafilcon A que no habían sido sumergidas en plata. Trofozoítos de Acanthamoeba fueron expuestos a nanopartículas de plata y se examinó su capacidad para formar quistes.----- ----- Resultados: Las lentes que contienen nanopartículas de plata redujeron la viabilidad bacteriana y la adhesión. Hubo una curva de respuesta dependiente de la dosis, en la que 10 ppm o 20 ppm de plata mostró una reducción logarítmica > 5 en la viabilidad bacteriana tanto en la solución como en la superficie de la lente. Para Acanthamoeba, 20 ppm de plata redujeron la capacidad de formar quistes en aproximadamente 1 unidad logarítmica.----- ----- Conclusiones: Las nanopartículas de plata son agentes antimicrobianos eficaces y pueden reducir la capacidad de células bacterianas viables para colonizar las lentes de contacto una vez que se han incorporado en la lente.
Resumo:
The Lagrangian particle tracking provides an effective method for simulating the deposition of nano- particles as well as micro-particles as it accounts for the particle inertia effect as well as the Brownian excitation. However, using the Lagrangian approach for simulating ultrafine particles has been limited due to computational cost and numerical difficulties. The aim of this paper is to study the deposition of nano-particles in cylindrical tubes under laminar condition using the Lagrangian particle tracking method. The commercial Fluent software is used to simulate the fluid flow in the pipes and to study the deposition and dispersion of nano-particles. Different particle diameters as well as different pipe lengths and flow rates are examined. The results show good agreement between the calculated deposition efficiency and different analytic correlations in the literature. Furthermore, for the nano-particles with higher diameters and when the effect of inertia has a higher importance, the calculated deposition efficiency by the Lagrangian method is less than the analytic correlations based on Eulerian method due to statistical error or the inertia effect.
Resumo:
Aerosol deposition in cylindrical tubes is a subject of interest to researchers and engineers in many applications of aerosol physics and metrology. Investigation of nano-particles in different aspects such as lungs, upper airways, batteries and vehicle exhaust gases is vital due the smaller size, adverse health effect and higher trouble for trapping than the micro-particles. The Lagrangian particle tracking provides an effective method for simulating the deposition of nano-particles as well as micro-particles as it accounts for the particle inertia effect as well as the Brownian excitation. However, using the Lagrangian approach for simulating ultrafine particles has been limited due to computational cost and numerical difficulties. In this paper, the deposition of nano-particles in cylindrical tubes under laminar condition is studied using the Lagrangian particle tracking method. The commercial Fluent software is used to simulate the fluid flow in the pipes and to study the deposition and dispersion of nano-particles. Different particle diameters as well as different flow rates are examined. The point analysis in a uniform flow is performed for validating the Brownian motion. The results show good agreement between the calculated deposition efficiency and the analytic correlations in the literature. Furthermore, for the nano-particles with the diameter more than 40 nm, the calculated deposition efficiency by the Lagrangian method is less than the analytic correlations based on Eulerian method due to statistical error or the inertia effect.
Resumo:
Highly stable silver nanoparticles (Ag NPs) in agar-agar (Ag/agar) as inorganic-organic hybrid were obtained as free-standing film by in situ reduction of silver nitrate by ethanol. The antimicrobial activity of Ag/agar film on Escherichia coli (E. coil), Staphylococcus aureus (S. aureus), and Candida albicans (C albicans) was evaluated in a nutrient broth and also in saline solution. In particular, films were repeatedly tested for antimicrobial activity after recycling. UV-vis absorption and TEM studies were carried out on films at different stages and morphological studies on microbes were carried out by SEM. Results showed spherical Ag NPs of size 15-25 nm, having sharp surface plasmon resonance (SPR) band. The antimicrobial activity of Ag/agar film was found to be in the order, C. albicans > E. coil > S. aureus, and antimicrobial activity against C. albicans was almost maintained even after the third cycle. Whereas, in case of E. coil and S. aureus there was a sharp decline in antimicrobial activity after the second cycle. Agglomeration of Ag NPs in Ag/agar film on exposure to microbes was observed by TEM studies. Cytotoxic experiments carried out on HeLa cells showed a threshold Ag NPs concentration of 60 mu g/mL, much higher than the minimum inhibition concentration of Ag NPs (25.8 mu g/mL) for E. coli. The mechanical strength of the film determined by nanoindentation technique showed almost retention of the strength even after repeated cycle. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The drying of sessile, nano-silica laden water droplet is studied under ambient conditions, in the absence of any convection. The drying process can be divided into two distinct regimes. During regime 1, the outer edge of the droplet remains pinned and particles agglomerate at the droplet periphery similar to the traditional coffee ring. However in regime 2, with further evaporation, both the liquid contact line and the agglomeration front starts moving radially inwards from the initial contact edge. The contact between the liquid and the agglomerate is maintained throughout regime 2 and the vaporisation driven liquid edge recession essentially drives the inward growth of the particle deposition. Fast kinetics of particle aggregation results in rapid growth of this agglomeration front as seen from the experiments. A theoretical formulation involving a simplistic model of the agglomeration front growth based on particle mass balance has been proposed. (C) 2014 Elsevier Ltd. All rights reserved,
Resumo:
The present study evaluates the synthesis by solvo-thermal method and electrocatalytic activity of nickel nano-particles encapsulated in hollow carbon sphere, in hydrogen and oxygen evolution reaction in PEM water electrolyzer. The XRD patterns have ascertained the formation of nickel metal with different planes in face centered cubic (fcc) and hexagonal closed pack (hcp) form. SEM and TEM images have confirmed the nickel nano-particles with diameter of 10-50 nm inside the 0.2 mu m sized hollow carbon spheres. The BET surface area values gradually decreased with greater encapsulation of nickel; although the electrochemical active surface area (ECSA) values have been calculated as quite higher. It confirms the well dispersion of nickel in the materials and induces their electrocatalytic performance through the active surface sites. The cyclic voltammetric studies have evaluated hydrogen desorption peaks as five times more intense in nickel encapsulated materials, in comparison to the pure hollow carbon spheres. The anodic peak current density value has reached the highest level of 1.9 A cm(-2) for HCSNi10, which gradually decreases with lesser amount of nickel in the electrocatalysts. These electrocatalysts have been proved electrochemically stable during their usage for 48 h long duration under potentiostatic condition. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Nano structured noble metals have very important applications in diverse fields as photovoltaics, catalysis, electronic and magnetic devices, etc. Here, we report the application of dual beam thermal lens technique for the determination of the effect of silver sol on the absolute fluorescence quantum yield (FQY) of the laser dye rhodamine 6G. A 532 nm radiation from a diode pumped solid state laser was used as the excitation source. It has been observed that the presence of silver sol decreases the fluorescence quantum efficiency. This is expected to have a very important consequence in enhancing Raman scattering which is an important spectrochemical tool that provides information on molecular structures. We have also observed that the presence of silver sol can enhance the thermal lens signal which makes the detection of the signal easier at any concentration.
Resumo:
This thesis Entitled Studies on transport and magnetic properties of nano particle doped mgb2 superconductor for technological applications.The thesis ahead focuses on the establishment of enhanced superconducting properties in bulk MgB2 via nano particle doping and its conversion into mono/multifilamentary wires. Further, an attempt has also been made to develop prototypes of MgB2 coil and conduction cooled current lead for technological applications. The thesis is configured into 6 chapters. The opening chapter gives an idea on the phenomenon of superconductivity, the various types of superconductors and its applications in different fields. The second chapter is an introduction on MgB2 superconductor and its relevance which includes crystal and electronic structure, superconducting mechanism, basic superconducting properties along with its present international status. The third chapter provides details on the preparation and characterization techniques followed through out the study on MgB2. Fourth chapter discusses the effect of processing temperature and chemical doping using nano sized dopants on the superconducting properties of MgB2• Fifth chapter deals with the optimization of processing parameters and novel preparation techniques for wire fabrication. Sixth chapter furnishes the preparation of multifilamentary wires with various filament configurations, their electromechanical properties and it also incorporates the development of an MgB2 coil and a general purpose conduction cooled current lead.
Resumo:
Laser pulses are largely used for processing and analysis of materials and in particular for nano-particle synthesis. This paper addresses fundamentals of the generation of nano-materials following specific thermodynamic paths of the irradiated material. Computer simulations using the hydro code MULTI and the SESAME equation of state have been performed to follow the dynamics of a target initially heated by a short laser pulse over a distance comparable to the metal skin depth.
Resumo:
Gold nanoparticles (GNPs) have shown potential to be used as a radiosensitizer for radiation therapy. Despite extensive research activity to study GNP radiosensitization using photon beams, only a few studies have been carried out using proton beams. In this work Monte Carlo simulations were used to assess the dose enhancement of GNPs for proton therapy. The enhancement effect was compared between a clinical proton spectrum, a clinical 6 MV photon spectrum, and a kilovoltage photon source similar to those used in many radiobiology lab settings. We showed that the mechanism by which GNPs can lead to dose enhancements in radiation therapy differs when comparing photon and proton radiation. The GNP dose enhancement using protons can be up to 14 and is independent of proton energy, while the dose enhancement is highly dependent on the photon energy used. For the same amount of energy absorbed in the GNP, interactions with protons, kVp photons and MV photons produce similar doses within several nanometers of the GNP surface, and differences are below 15% for the first 10 nm. However, secondary electrons produced by kilovoltage photons have the longest range in water as compared to protons and MV photons, e.g. they cause a dose enhancement 20 times higher than the one caused by protons 10 μm away from the GNP surface. We conclude that GNPs have the potential to enhance radiation therapy depending on the type of radiation source. Proton therapy can be enhanced significantly only if the GNPs are in close proximity to the biological target.
Resumo:
Surface and bulk plasmon resonance of noble metal particles play an essential role in the multicolor photochromism of semiconductor systems containing noble metal particles, Here we examined several key parameters affecting surface plasmon resonance wavelength (SPRW) of Ag particles and investigated the relation between surface plasmon and photochromic reaction wavelength. From the transmission spectra of sandwiched (TiO2/Ag/TiO2) and overcoated (Ag/TiO2) films deposited on quartz substrates at room temperature by rf helicon magnetron sputtering, we demonstrated that the SPRW can be made tunable by changing the surrounding media and thickness of the metal layer. The coloration and bleaching in visible light region due to photochromism were clearly observed for the films inserted with a 0.55 nm Ag layer.
Resumo:
A wearable silver nano particle inkjet printed antenna suitable for wireless biomedical sensing is presented. The performance is evaluated on a synthetic variable layered phantom test-bed, representative of human tissue for operation in the 868/915 MHz, and 2400 MHz industrial, scientific and medical frequency bands. Antenna radiation efficiency measurements on the phantom were compared with antennas prototyped with copper. Total radiation efficiencies up to ???6.5 dB are reported, with less than 0.5 dB difference in performance between copper and silver nano particle variants, showing promising application for low-cost disposable wireless sensing.