830 resultados para Silicone elastomer


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Silicone has a relatively high coefficient of friction and silicone medical devices therefore lack inherent lubricity, leading to pain on device insertion and potential tissue trauma. In this study, higher molecular weight tetra(alkoxy) silanes, particularly tetra(oleyloxy) silane, have been used as crosslinkers in the condensation cure of a hydroxy end-functionalised linear poly(dimethylsiloxane). The resulting elastomers displayed a persistent lubricous surface of oleyl alcohol, and coefficients of friction (static and dynamic) approaching zero. Chemical structures of the synthesised silanes and surface alcohol exudate were confirmed by nuclear magnetic resonance spectroscopy. Mechanical properties of the elastomers, which were chemically identical to conventionally cured systems, suggested that an 80/20 mixture of tetra(oleyloxy) silane and tetra(propoxysilane) gave the best compromise between desirable mechanical and frictional properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The silicone elastomer solubilities of a range of drugs and pharmaceutical excipients employed in the development of silicone intravaginal drug delivery rings (polyethylene glycols, norethisterone acetate, estradiol, triclosan, oleyl alcohol, oxybutynin) have been determined using dynamic mechanical analysis. The method involves measuring the concentration-dependent decrease in the storage modulus associated with the melting of the incorporated drug/excipient, and extrapolation to zero change in storage modulus. The study also demonstrates the effect of drug/excipient concentrations on the mechanical stiffness of the silicone devices at 37°C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The in vitro release characteristics of eight low-molecular-weight drugs (clindamycin, 17beta-estradiol, 17beta-estradiol-3-acetate, 17beta-estradiol diacetate, metronidazole, norethisterone, norethisterone acetate and oxybutynin) from silicone matrixtype intravaginal rings of various drug loadings have been evaluated under sink conditions. Through modelling of the release data using the Higuchi equation, and determination of the silicone solubility of the drugs, the apparent silicone elastomer diffusion coefficients of the drugs have been calculated. Furthermore, in an attempt to develop a quantitative model for predicting release rates of new drug substances from these vaginal ring devices, it has been observed that linear relationships exist between the log of the silicone solubility of the drug (mg ml(-1)) and the reciprocal of its melting point (K-1) (y = 3.558x - 9.620, R = 0.77), and also between the log of the diffusion coefficient (cm(2) s(-1)) and the molecular weight of the drug molecule (g mol(-1)) (y = - 0.0068x - 4.0738, R = 0.95). Given that the silicone solubility and silicone diffusion coefficient are the major parameters influencing the permeation of drugs through silicone elastomers, it is now possible to predict through use of the appropriate mathematical equations both matrix-type and reservoir-type intravaginal ring release rates simply from a knowledge of drug melting temperature and molecular weight. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Silicone elastomer vaginal rings are currently being pursued as a controlled-release strategy for delivering microbicidal substances for the prevention of heterosexual transmission of HIV. Although it is well established that the distribution of drugs in delivery systems influences the release characteristics, in practice the distribution is often difficult to quantify in-situ. Therefore, the aim of this work was to determine whether Raman spectroscopy might provide a rapid, non-contact means of measuring the concentrations of the lead candidate HIV microbicide TMC120 in a silicone elastomer reservoir-type vaginal ring. Vaginal rings loaded with TMC120 were manufactured and sectioned before either Raman mapping an entire ring cross-section (100 µm resolution) or running line scans at appropriate time intervals up to 30 h after manufacture. The results demonstrated that detectable amounts of TMC120, above the silicone elastomer saturation concentration, could be detected up to 1 mm into the sheath, presumably as a consequence of permeation and subsequent reprecipitation. The extent of permeation was found to be similar in rings manufactured at 25 and 80°C.