947 resultados para Significant wave height
Resumo:
"October 1979."
Resumo:
"August 1982."
Resumo:
"January 1981."
Resumo:
A new model is proposed to estimate the significant wave heights with ERS-1/2 scatterometer data. The results show that the relationship between wave parameters and radar backscattering cross section is similar to that between wind and the radar backscattering cross section. Therefore, the relationship between significant wave height and the radar backscattering cross section is established with a neural network algorithm, which is, if the average wave period is <= 7s, the root mean square of significant wave height retrieved from ERS-1/2 data is 0.51 m, or 0.72 m if it is >7s otherwise.
Resumo:
Large waves pose risks to ships, offshore structures, coastal infrastructure and ecosystems. This paper analyses 10 years of in-situ measurements of significant wave height (Hs) and maximum wave height (Hmax) from the ocean weather ship Polarfront in the Norwegian Sea. During the period 2000 to 2009, surface elevation was recorded every 0.59 s during sampling periods of 30 min. The Hmax observations scale linearly with Hs on average. A widely-used empirical Weibull distribution is found to estimate average values of Hmax/H s and Hmax better than a Rayleigh distribution, but tends to underestimate both for all but the smallest waves. In this paper we propose a modified Rayleigh distribution which compensates for the heterogeneity of the observed dataset: the distribution is fitted to the whole dataset and improves the estimate of the largest waves. Over the 10-year period, the Weibull distribution approximates the observed Hs and Hmax well, and an exponential function can be used to predict the probability distribution function of the ratio Hmax/Hs. However, the Weibull distribution tends to underestimate the occurrence of extremely large values of Hs and Hmax. The persistence of Hs and Hmax in winter is also examined. Wave fields with Hs > 12 m and Hmax > 16 m do not last longer than 3 h. Low-to-moderate wave heights that persist for more than 12 h dominate the relationship of the wave field with the winter NAO index over 2000–2009. In contrast, the inter-annual variability of wave fields with Hs > 5.5 m or Hmax > 8.5 m and wave fields persisting over ~2.5 days is not associated with the winter NAO index.
Resumo:
Large waves pose risks to ships, offshore structures, coastal infrastructure and ecosystems. This paper analyses 10 years of in-situ measurements of significant wave height (Hs) and maximum wave height (Hmax) from the ocean weather ship Polarfront in the Norwegian Sea. During the period 2000 to 2009, surface elevation was recorded every 0.59 s during sampling periods of 30 min. The Hmax observations scale linearly with Hs on average. A widely-used empirical Weibull distribution is found to estimate average values of Hmax/Hs and Hmax better than a Rayleigh distribution, but tends to underestimate both for all but the smallest waves. In this paper we propose a modified Rayleigh distribution which compensates for the heterogeneity of the observed dataset: the distribution is fitted to the whole dataset and improves the estimate of the largest waves. Over the 10-year period, the Weibull distribution approximates the observed Hs and Hmax well, and an exponential function can be used to predict the probability distribution function of the ratio Hmax/Hs. However, the Weibull distribution tends to underestimate the occurrence of extremely large values of Hs and Hmax. The persistence of Hs and Hmax in winter is also examined. Wave fields with Hs>12 m and Hmax>16 m do not last longer than 3 h. Low-to-moderate wave heights that persist for more than 12 h dominate the relationship of the wave field with the winter NAO index over 2000–2009. In contrast, the inter-annual variability of wave fields with Hs>5.5 m or Hmax>8.5 m and wave fields persisting over ~2.5 days is not associated with the winter NAO index.
Resumo:
SARAL/AltiKa GDR-T are analyzed to assess the quality of the significant wave height (SWH) measurements. SARAL along-track SWH plots reveal cases of erroneous data, more or less isolated, not detected by the quality flags. The anomalies are often correlated with strong attenuation of the Ka-band backscatter coefficient, sensitive to clouds and rain. A quality test based on the 1Hz standard deviation is proposed to detect such anomalies. From buoy comparison, it is shown that SARAL SWH is more accurate than Jason-2, particularly at low SWH, and globally does not require any correction. Results are better with open ocean than with coastal buoys. The scatter and the number of outliers are much larger for coastal buoys. SARAL is then compared with Jason-2 and Cryosat-2. The altimeter data are extracted from the global altimeter SWH Ifremer data base, including specific corrections to calibrate the various altimeters. The comparison confirms the high quality of SARAL SWH. The 1Hz standard deviation is much less than for Jason-2 and Cryosat-2, particularly at low SWH. Furthermore, results show that the corrections applied to Jason-2 and to Cryosat-2, in the data base, are efficient, improving the global agreement between the three altimeters.
Resumo:
This paper analyses 10 years of in-situ measurements of significant wave height (Hs) and maximum wave height (Hmax) from the ocean weather ship Polarfront in the Norwegian Sea. The 30-minute Ship-Borne Wave Recorder measurements of Hmax and Hs are shown to be consistent with theoretical wave distributions. The linear regression between Hmax and Hs has a slope of 1.53. Neither Hs nor Hmax show a significant trend in the period 2000–2009. These data are combined with earlier observations. The long-term trend over the period 1980–2009 in annual Hs is 2.72 ± 0.88 cm/year. Mean Hs and Hmax are both correlated with the North Atlantic Oscillation (NAO) index during winter. The correlation with the NAO index is highest for the more frequently encountered (75th percentile) wave heights. The wave field variability associated with the NAO index is reconstructed using a 500-year NAO index record. Hs and H max are found to vary by up to 1.42 m and 3.10 m respectively over the 500-year period. Trends in all 30-year segments of the reconstructed wave field are lower than the trend in the observations during 1980–2009. The NAO index does not change significantly in 21st century projections from CMIP5 climate models under scenario RCP85, and thus no NAO-related changes are expected in the mean and extreme wave fields of the Norwegian Sea.
Resumo:
This paper analyses 10 years of in-situ measurements of significant wave height (Hs) and maximum wave height (Hmax) from the ocean weather ship Polarfront in the Norwegian Sea. The 30-minute Ship-Borne Wave Recorder measurements of Hmax and Hs are shown to be consistent with theoretical wave distributions. The linear regression between Hmax and Hs has a slope of 1.53. Neither Hs nor Hmax show a significant trend in the period 2000–2009. These data are combined with earlier observations. The long-term trend over the period 1980–2009 in annual Hs is 2.72 ± 0.88 cm/year. Mean Hs and Hmax are both correlated with the North Atlantic Oscillation (NAO) index during winter. The correlation with the NAO index is highest for the more frequently encountered (75th percentile) wave heights. The wave field variability associated with the NAO index is reconstructed using a 500-year NAO index record. Hs and Hmax are found to vary by up to 1.42 m and 3.10 m respectively over the 500-year period. Trends in all 30-year segments of the reconstructed wave field are lower than the trend in the observations during 1980–2009. The NAO index does not change significantly in 21st century projections from CMIP5 climate models under scenario RCP85, and thus no NAO-related changes are expected in the mean and extreme wave fields of the Norwegian Sea.
Resumo:
In the ocean science community, researchers have begun employing novel sensor platforms as integral pieces in oceanographic data collection, which have significantly advanced the study and prediction of complex and dynamic ocean phenomena. These innovative tools are able to provide scientists with data at unprecedented spatiotemporal resolutions. This paper focuses on the newly developed Wave Glider platform from Liquid Robotics. This vehicle produces forward motion by harvesting abundant natural energy from ocean waves, and provides a persistent ocean presence for detailed ocean observation. This study is targeted at determining a kinematic model for offline planning that provides an accurate estimation of the vehicle speed for a desired heading and set of environmental parameters. Given the significant wave height, ocean surface and subsurface currents, wind speed and direction, we present the formulation of a system identification to provide the vehicle’s speed over a range of possible directions.
Resumo:
The forces of random wave plus current acting on a simplified offshore platform (jacket) model have been studied numerically and experimentally. The numerical results are in good agreement with experiments. The mean force can be approximated as a function of equivalent velocity parameter and the root-mean-square force as a function of equivalent significant wave height parameter.
Resumo:
A waverider buoy was deployed in Phitti Creek (24°33'N; 67°03'E) for wave measurements during April-July 1986. Using Tucker's method wave records were calculated in terms of significant wave height (Hs) and Maximum Wave Height (Hmax). For each parameter weekly mean and standard deviation values were also computed for statistical analysis. For Hs the lowest mean value of 0.8m and for Hmax the lowest mean value of 1.51m were observed in the fourth week of April whereas the highest mean value observed for Hs was 3.02m and for Hmax was 4.94m in the fourth week of June, 1986.
Resumo:
A new algorithm is proposed to estimate significant wave height from QuikSCAT scatterometer data. The results show that the relationship between wave parameters and the radar backscattering cross section is similar to that between wind and the radar backscattering cross section. Therefore, the relationship between significant wave height and the radar backscattering cross section is established with a neural network algorithm. If the average wave period is less than or equal to 7 s, the root mean square errors of the significant wave height retrieved from QuikSCAT data are 0.58 m for HH polarization (HH-pol) and 0.60 m for VV polarization (VV-pol). If the average wave period is greater than 7 s, the root mean square errors of the significant wave height retrieved from QuikSCAT data are 0.83 m (HH-pol) and 1.10 m (VV-pol), respectively.