965 resultados para Signal processing - Mathematical models


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Forensic speaker comparison exams have complex characteristics, demanding a long time for manual analysis. A method for automatic recognition of vowels, providing feature extraction for acoustic analysis is proposed, aiming to contribute as a support tool in these exams. The proposal is based in formant measurements by LPC (Linear Predictive Coding), selectively by fundamental frequency detection, zero crossing rate, bandwidth and continuity, with the clustering being done by the k-means method. Experiments using samples from three different databases have shown promising results, in which the regions corresponding to five of the Brasilian Portuguese vowels were successfully located, providing visualization of a speaker’s vocal tract behavior, as well as the detection of segments corresponding to target vowels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Frequency deviation is a common problem for power system signal processing. Many power system measurements are carried out in a fixed sampling rate assuming the system operates in its nominal frequency (50 or 60 Hz). However, the actual frequency may deviate from the normal value from time to time due to various reasons such as disturbances and subsequent system transients. Measurement of signals based on a fixed sampling rate may introduce errors under such situations. In order to achieve high precision signal measurement appropriate algorithms need to be employed to reduce the impact from frequency deviation in the power system data acquisition process. This paper proposes an advanced algorithm to enhance Fourier transform for power system signal processing. The algorithm is able to effectively correct frequency deviation under fixed sampling rate. Accurate measurement of power system signals is essential for the secure and reliable operation of power systems. The algorithm is readily applicable to such occasions where signal processing is affected by frequency deviation. Both mathematical proof and numerical simulation are given in this paper to illustrate robustness and effectiveness of the proposed algorithm. Crown Copyright (C) 2003 Published by Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

When dealing with nonlinear blind processing algorithms (deconvolution or post-nonlinear source separation), complex mathematical estimations must be done giving as a result very slow algorithms. This is the case, for example, in speech processing, spike signals deconvolution or microarray data analysis. In this paper, we propose a simple method to reduce computational time for the inversion of Wiener systems or the separation of post-nonlinear mixtures, by using a linear approximation in a minimum mutual information algorithm. Simulation results demonstrate that linear spline interpolation is fast and accurate, obtaining very good results (similar to those obtained without approximation) while computational time is dramatically decreased. On the other hand, cubic spline interpolation also obtains similar good results, but due to its intrinsic complexity, the global algorithm is much more slow and hence not useful for our purpose.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A body of research has developed within the context of nonlinear signal and image processing that deals with the automatic, statistical design of digital window-based filters. Based on pairs of ideal and observed signals, a filter is designed in an effort to minimize the error between the ideal and filtered signals. The goodness of an optimal filter depends on the relation between the ideal and observed signals, but the goodness of a designed filter also depends on the amount of sample data from which it is designed. In order to lessen the design cost, a filter is often chosen from a given class of filters, thereby constraining the optimization and increasing the error of the optimal filter. To a great extent, the problem of filter design concerns striking the correct balance between the degree of constraint and the design cost. From a different perspective and in a different context, the problem of constraint versus sample size has been a major focus of study within the theory of pattern recognition. This paper discusses the design problem for nonlinear signal processing, shows how the issue naturally transitions into pattern recognition, and then provides a review of salient related pattern-recognition theory. In particular, it discusses classification rules, constrained classification, the Vapnik-Chervonenkis theory, and implications of that theory for morphological classifiers and neural networks. The paper closes by discussing some design approaches developed for nonlinear signal processing, and how the nature of these naturally lead to a decomposition of the error of a designed filter into a sum of the following components: the Bayes error of the unconstrained optimal filter, the cost of constraint, the cost of reducing complexity by compressing the original signal distribution, the design cost, and the contribution of prior knowledge to a decrease in the error. The main purpose of the paper is to present fundamental principles of pattern recognition theory within the framework of active research in nonlinear signal processing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The research activity carried out during the PhD course was focused on the development of mathematical models of some cognitive processes and their validation by means of data present in literature, with a double aim: i) to achieve a better interpretation and explanation of the great amount of data obtained on these processes from different methodologies (electrophysiological recordings on animals, neuropsychological, psychophysical and neuroimaging studies in humans), ii) to exploit model predictions and results to guide future research and experiments. In particular, the research activity has been focused on two different projects: 1) the first one concerns the development of neural oscillators networks, in order to investigate the mechanisms of synchronization of the neural oscillatory activity during cognitive processes, such as object recognition, memory, language, attention; 2) the second one concerns the mathematical modelling of multisensory integration processes (e.g. visual-acoustic), which occur in several cortical and subcortical regions (in particular in a subcortical structure named Superior Colliculus (SC)), and which are fundamental for orienting motor and attentive responses to external world stimuli. This activity has been realized in collaboration with the Center for Studies and Researches in Cognitive Neuroscience of the University of Bologna (in Cesena) and the Department of Neurobiology and Anatomy of the Wake Forest University School of Medicine (NC, USA). PART 1. Objects representation in a number of cognitive functions, like perception and recognition, foresees distribute processes in different cortical areas. One of the main neurophysiological question concerns how the correlation between these disparate areas is realized, in order to succeed in grouping together the characteristics of the same object (binding problem) and in maintaining segregated the properties belonging to different objects simultaneously present (segmentation problem). Different theories have been proposed to address these questions (Barlow, 1972). One of the most influential theory is the so called “assembly coding”, postulated by Singer (2003), according to which 1) an object is well described by a few fundamental properties, processing in different and distributed cortical areas; 2) the recognition of the object would be realized by means of the simultaneously activation of the cortical areas representing its different features; 3) groups of properties belonging to different objects would be kept separated in the time domain. In Chapter 1.1 and in Chapter 1.2 we present two neural network models for object recognition, based on the “assembly coding” hypothesis. These models are networks of Wilson-Cowan oscillators which exploit: i) two high-level “Gestalt Rules” (the similarity and previous knowledge rules), to realize the functional link between elements of different cortical areas representing properties of the same object (binding problem); 2) the synchronization of the neural oscillatory activity in the γ-band (30-100Hz), to segregate in time the representations of different objects simultaneously present (segmentation problem). These models are able to recognize and reconstruct multiple simultaneous external objects, even in difficult case (some wrong or lacking features, shared features, superimposed noise). In Chapter 1.3 the previous models are extended to realize a semantic memory, in which sensory-motor representations of objects are linked with words. To this aim, the network, previously developed, devoted to the representation of objects as a collection of sensory-motor features, is reciprocally linked with a second network devoted to the representation of words (lexical network) Synapses linking the two networks are trained via a time-dependent Hebbian rule, during a training period in which individual objects are presented together with the corresponding words. Simulation results demonstrate that, during the retrieval phase, the network can deal with the simultaneous presence of objects (from sensory-motor inputs) and words (from linguistic inputs), can correctly associate objects with words and segment objects even in the presence of incomplete information. Moreover, the network can realize some semantic links among words representing objects with some shared features. These results support the idea that semantic memory can be described as an integrated process, whose content is retrieved by the co-activation of different multimodal regions. In perspective, extended versions of this model may be used to test conceptual theories, and to provide a quantitative assessment of existing data (for instance concerning patients with neural deficits). PART 2. The ability of the brain to integrate information from different sensory channels is fundamental to perception of the external world (Stein et al, 1993). It is well documented that a number of extraprimary areas have neurons capable of such a task; one of the best known of these is the superior colliculus (SC). This midbrain structure receives auditory, visual and somatosensory inputs from different subcortical and cortical areas, and is involved in the control of orientation to external events (Wallace et al, 1993). SC neurons respond to each of these sensory inputs separately, but is also capable of integrating them (Stein et al, 1993) so that the response to the combined multisensory stimuli is greater than that to the individual component stimuli (enhancement). This enhancement is proportionately greater if the modality-specific paired stimuli are weaker (the principle of inverse effectiveness). Several studies have shown that the capability of SC neurons to engage in multisensory integration requires inputs from cortex; primarily the anterior ectosylvian sulcus (AES), but also the rostral lateral suprasylvian sulcus (rLS). If these cortical inputs are deactivated the response of SC neurons to cross-modal stimulation is no different from that evoked by the most effective of its individual component stimuli (Jiang et al 2001). This phenomenon can be better understood through mathematical models. The use of mathematical models and neural networks can place the mass of data that has been accumulated about this phenomenon and its underlying circuitry into a coherent theoretical structure. In Chapter 2.1 a simple neural network model of this structure is presented; this model is able to reproduce a large number of SC behaviours like multisensory enhancement, multisensory and unisensory depression, inverse effectiveness. In Chapter 2.2 this model was improved by incorporating more neurophysiological knowledge about the neural circuitry underlying SC multisensory integration, in order to suggest possible physiological mechanisms through which it is effected. This endeavour was realized in collaboration with Professor B.E. Stein and Doctor B. Rowland during the 6 months-period spent at the Department of Neurobiology and Anatomy of the Wake Forest University School of Medicine (NC, USA), within the Marco Polo Project. The model includes four distinct unisensory areas that are devoted to a topological representation of external stimuli. Two of them represent subregions of the AES (i.e., FAES, an auditory area, and AEV, a visual area) and send descending inputs to the ipsilateral SC; the other two represent subcortical areas (one auditory and one visual) projecting ascending inputs to the same SC. Different competitive mechanisms, realized by means of population of interneurons, are used in the model to reproduce the different behaviour of SC neurons in conditions of cortical activation and deactivation. The model, with a single set of parameters, is able to mimic the behaviour of SC multisensory neurons in response to very different stimulus conditions (multisensory enhancement, inverse effectiveness, within- and cross-modal suppression of spatially disparate stimuli), with cortex functional and cortex deactivated, and with a particular type of membrane receptors (NMDA receptors) active or inhibited. All these results agree with the data reported in Jiang et al. (2001) and in Binns and Salt (1996). The model suggests that non-linearities in neural responses and synaptic (excitatory and inhibitory) connections can explain the fundamental aspects of multisensory integration, and provides a biologically plausible hypothesis about the underlying circuitry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis explores the capabilities of heterogeneous multi-core systems, based on multiple Graphics Processing Units (GPUs) in a standard desktop framework. Multi-GPU accelerated desk side computers are an appealing alternative to other high performance computing (HPC) systems: being composed of commodity hardware components fabricated in large quantities, their price-performance ratio is unparalleled in the world of high performance computing. Essentially bringing “supercomputing to the masses”, this opens up new possibilities for application fields where investing in HPC resources had been considered unfeasible before. One of these is the field of bioelectrical imaging, a class of medical imaging technologies that occupy a low-cost niche next to million-dollar systems like functional Magnetic Resonance Imaging (fMRI). In the scope of this work, several computational challenges encountered in bioelectrical imaging are tackled with this new kind of computing resource, striving to help these methods approach their true potential. Specifically, the following main contributions were made: Firstly, a novel dual-GPU implementation of parallel triangular matrix inversion (TMI) is presented, addressing an crucial kernel in computation of multi-mesh head models of encephalographic (EEG) source localization. This includes not only a highly efficient implementation of the routine itself achieving excellent speedups versus an optimized CPU implementation, but also a novel GPU-friendly compressed storage scheme for triangular matrices. Secondly, a scalable multi-GPU solver for non-hermitian linear systems was implemented. It is integrated into a simulation environment for electrical impedance tomography (EIT) that requires frequent solution of complex systems with millions of unknowns, a task that this solution can perform within seconds. In terms of computational throughput, it outperforms not only an highly optimized multi-CPU reference, but related GPU-based work as well. Finally, a GPU-accelerated graphical EEG real-time source localization software was implemented. Thanks to acceleration, it can meet real-time requirements in unpreceeded anatomical detail running more complex localization algorithms. Additionally, a novel implementation to extract anatomical priors from static Magnetic Resonance (MR) scansions has been included.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe a recent offering of a linear systems and signal processing course for third-year electrical and computer engineering students. This course is a pre-requisite for our first digital signal processing course. Students have traditionally viewed linear systems courses as mathematical and extremely difficult. Without compromising the rigor of the required concepts, we strived to make the course fun, with application-based hands-on laboratory projects. These projects can be modified easily to meet specific instructors' preferences. © 2011 IEEE.(17 refs)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The performance of the parallel vector implementation of the one- and two-dimensional orthogonal transforms is evaluated. The orthogonal transforms are computed using actual or modified fast Fourier transform (FFT) kernels. The factors considered in comparing the speed-up of these vectorized digital signal processing algorithms are discussed and it is shown that the traditional way of comparing th execution speed of digital signal processing algorithms by the ratios of the number of multiplications and additions is no longer effective for vector implementation; the structure of the algorithm must also be considered as a factor when comparing the execution speed of vectorized digital signal processing algorithms. Simulation results on the Cray X/MP with the following orthogonal transforms are presented: discrete Fourier transform (DFT), discrete cosine transform (DCT), discrete sine transform (DST), discrete Hartley transform (DHT), discrete Walsh transform (DWHT), and discrete Hadamard transform (DHDT). A comparison between the DHT and the fast Hartley transform is also included.(34 refs)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction and motivation: A wide variety of organisms have developed in-ternal biomolecular clocks in order to adapt to cyclic changes of the environment. Clock operation involves genetic networks. These genetic networks have to be mod¬eled in order to understand the underlying mechanism of oscillations and to design new synthetic cellular clocks. This doctoral thesis has resulted in two contributions to the fields of genetic clocks and systems and synthetic biology, generally. The first contribution is a new genetic circuit model that exhibits an oscillatory behav¬ior through catalytic RNA molecules. The second and major contribution is a new genetic circuit model demonstrating that a repressor molecule acting on the positive feedback of a self-activating gene produces reliable oscillations. First contribution: A new model of a synthetic genetic oscillator based on a typical two-gene motif with one positive and one negative feedback loop is pre¬sented. The originality is that the repressor is a catalytic RNA molecule rather than a protein or a non-catalytic RNA molecule. This catalytic RNA is a ribozyme that acts post-transcriptionally by binding to and cleaving target mRNA molecules. This genetic clock involves just two genes, a mRNA and an activator protein, apart from the ribozyme. Parameter values that produce a circadian period in both determin¬istic and stochastic simulations have been chosen as an example of clock operation. The effects of the stochastic fluctuations are quantified by a period histogram and autocorrelation function. The conclusion is that catalytic RNA molecules can act as repressor proteins and simplify the design of genetic oscillators. Second and major contribution: It is demonstrated that a self-activating gene in conjunction with a simple negative interaction can easily produce robust matically validated. This model is comprised of two clearly distinct parts. The first is a positive feedback created by a protein that binds to the promoter of its own gene and activates the transcription. The second is a negative interaction in which a repressor molecule prevents this protein from binding to its promoter. A stochastic study shows that the system is robust to noise. A deterministic study identifies that the oscillator dynamics are mainly driven by two types of biomolecules: the protein, and the complex formed by the repressor and this protein. The main conclusion of this study is that a simple and usual negative interaction, such as degradation, se¬questration or inhibition, acting on the positive transcriptional feedback of a single gene is a sufficient condition to produce reliable oscillations. One gene is enough and the positive transcriptional feedback signal does not need to activate a second repressor gene. At the genetic level, this means that an explicit negative feedback loop is not necessary. Unlike many genetic oscillators, this model needs neither cooperative binding reactions nor the formation of protein multimers. Applications and future research directions: Recently, RNA molecules have been found to play many new catalytic roles. The first oscillatory genetic model proposed in this thesis uses ribozymes as repressor molecules. This could provide new synthetic biology design principles and a better understanding of cel¬lular clocks regulated by RNA molecules. The second genetic model proposed here involves only a repression acting on a self-activating gene and produces robust oscil¬lations. Unlike current two-gene oscillators, this model surprisingly does not require a second repressor gene. This result could help to clarify the design principles of cellular clocks and constitute a new efficient tool for engineering synthetic genetic oscillators. Possible follow-on research directions are: validate models in vivo and in vitro, research the potential of second model as a genetic memory, investigate new genetic oscillators regulated by non-coding RNAs and design a biosensor of positive feedbacks in genetic networks based on the operation of the second model Resumen Introduccion y motivacion: Una amplia variedad de organismos han desarro-llado relojes biomoleculares internos con el fin de adaptarse a los cambios ciclicos del entorno. El funcionamiento de estos relojes involucra redes geneticas. El mo delado de estas redes geneticas es esencial tanto para entender los mecanismos que producen las oscilaciones como para diseiiar nuevos circuitos sinteticos en celulas. Esta tesis doctoral ha dado lugar a dos contribuciones dentro de los campos de los circuitos geneticos en particular, y biologia de sistemas y sintetica en general. La primera contribucion es un nuevo modelo de circuito genetico que muestra un comportamiento oscilatorio usando moleculas de ARN cataliticas. La segunda y principal contribucion es un nuevo modelo de circuito genetico que demuestra que una molecula represora actuando sobre el lazo de un gen auto-activado produce oscilaciones robustas. Primera contribucion: Es un nuevo modelo de oscilador genetico sintetico basado en una tipica red genetica compuesta por dos genes con dos lazos de retroa-limentacion, uno positivo y otro negativo. La novedad de este modelo es que el represor es una molecula de ARN catalftica, en lugar de una protefna o una molecula de ARN no-catalitica. Este ARN catalitico es una ribozima que actua despues de la transcription genetica uniendose y cortando moleculas de ARN mensajero (ARNm). Este reloj genetico involucra solo dos genes, un ARNm y una proteina activadora, aparte de la ribozima. Como ejemplo de funcionamiento, se han escogido valores de los parametros que producen oscilaciones con periodo circadiano (24 horas) tanto en simulaciones deterministas como estocasticas. El efecto de las fluctuaciones es-tocasticas ha sido cuantificado mediante un histograma del periodo y la función de auto-correlacion. La conclusion es que las moleculas de ARN con propiedades cataliticas pueden jugar el misnio papel que las protemas represoras, y por lo tanto, simplificar el diseno de los osciladores geneticos. Segunda y principal contribucion: Es un nuevo modelo de oscilador genetico que demuestra que un gen auto-activado junto con una simple interaction negativa puede producir oscilaciones robustas. Este modelo ha sido estudiado y validado matematicamente. El modelo esta compuesto de dos partes bien diferenciadas. La primera parte es un lazo de retroalimentacion positiva creado por una proteina que se une al promotor de su propio gen activando la transcription. La segunda parte es una interaction negativa en la que una molecula represora evita la union de la proteina con el promotor. Un estudio estocastico muestra que el sistema es robusto al ruido. Un estudio determinista muestra que la dinamica del sistema es debida principalmente a dos tipos de biomoleculas: la proteina, y el complejo formado por el represor y esta proteina. La conclusion principal de este estudio es que una simple y usual interaction negativa, tal como una degradation, un secuestro o una inhibition, actuando sobre el lazo de retroalimentacion positiva de un solo gen es una condition suficiente para producir oscilaciones robustas. Un gen es suficiente y el lazo de retroalimentacion positiva no necesita activar a un segundo gen represor, tal y como ocurre en los relojes actuales con dos genes. Esto significa que a nivel genetico un lazo de retroalimentacion negativa no es necesario de forma explicita. Ademas, este modelo no necesita reacciones cooperativas ni la formation de multimeros proteicos, al contrario que en muchos osciladores geneticos. Aplicaciones y futuras lineas de investigacion: En los liltimos anos, se han descubierto muchas moleculas de ARN con capacidad catalitica. El primer modelo de oscilador genetico propuesto en esta tesis usa ribozimas como moleculas repre¬soras. Esto podria proporcionar nuevos principios de diseno en biologia sintetica y una mejor comprension de los relojes celulares regulados por moleculas de ARN. El segundo modelo de oscilador genetico propuesto aqui involucra solo una represion actuando sobre un gen auto-activado y produce oscilaciones robustas. Sorprendente-mente, un segundo gen represor no es necesario al contrario que en los bien conocidos osciladores con dos genes. Este resultado podria ayudar a clarificar los principios de diseno de los relojes celulares naturales y constituir una nueva y eficiente he-rramienta para crear osciladores geneticos sinteticos. Algunas de las futuras lineas de investigation abiertas tras esta tesis son: (1) la validation in vivo e in vitro de ambos modelos, (2) el estudio del potential del segundo modelo como circuito base para la construction de una memoria genetica, (3) el estudio de nuevos osciladores geneticos regulados por ARN no codificante y, por ultimo, (4) el rediseno del se¬gundo modelo de oscilador genetico para su uso como biosensor capaz de detectar genes auto-activados en redes geneticas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes a method of signal preprocessing under active monitoring. Suppose we want to solve the inverse problem of getting the response of a medium to one powerful signal, which is equivalent to obtaining the transmission function of the medium, but do not have an opportunity to conduct such an experiment (it might be too expensive or harmful for the environment). Practically the problem can be reduced to obtaining the transmission function of the medium. In this case we can conduct a series of experiments of relatively low power and superpose the response signals. However, this method is conjugated with considerable loss of information (especially in the high frequency domain) due to fluctuations of the phase, the frequency and the starting time of each individual experiment. The preprocessing technique presented in this paper allows us to substantially restore the response of the medium and consequently to find a better estimate for the transmission function. This technique is based on expanding the initial signal into the system of orthogonal functions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Brain functioning relies on the interaction of several neural populations connected through complex connectivity networks, enabling the transmission and integration of information. Recent advances in neuroimaging techniques, such as electroencephalography (EEG), have deepened our understanding of the reciprocal roles played by brain regions during cognitive processes. The underlying idea of this PhD research is that EEG-related functional connectivity (FC) changes in the brain may incorporate important neuromarkers of behavior and cognition, as well as brain disorders, even at subclinical levels. However, a complete understanding of the reliability of the wide range of existing connectivity estimation techniques is still lacking. The first part of this work addresses this limitation by employing Neural Mass Models (NMMs), which simulate EEG activity and offer a unique tool to study interconnected networks of brain regions in controlled conditions. NMMs were employed to test FC estimators like Transfer Entropy and Granger Causality in linear and nonlinear conditions. Results revealed that connectivity estimates reflect information transmission between brain regions, a quantity that can be significantly different from the connectivity strength, and that Granger causality outperforms the other estimators. A second objective of this thesis was to assess brain connectivity and network changes on EEG data reconstructed at the cortical level. Functional brain connectivity has been estimated through Granger Causality, in both temporal and spectral domains, with the following goals: a) detect task-dependent functional connectivity network changes, focusing on internal-external attention competition and fear conditioning and reversal; b) identify resting-state network alterations in a subclinical population with high autistic traits. Connectivity-based neuromarkers, compared to the canonical EEG analysis, can provide deeper insights into brain mechanisms and may drive future diagnostic methods and therapeutic interventions. However, further methodological studies are required to fully understand the accuracy and information captured by FC estimates, especially concerning nonlinear phenomena.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The goal of this paper is to study and propose a new technique for noise reduction used during the reconstruction of speech signals, particularly for biomedical applications. The proposed method is based on Kalman filtering in the time domain combined with spectral subtraction. Comparison with discrete Kalman filter in the frequency domain shows better performance of the proposed technique. The performance is evaluated by using the segmental signal-to-noise ratio and the Itakura-Saito`s distance. Results have shown that Kalman`s filter in time combined with spectral subtraction is more robust and efficient, improving the Itakura-Saito`s distance by up to four times. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Real-time viscosity measurement remains a necessity for highly automated industry. To resolve this problem, many studies have been carried out using an ultrasonic shear wave reflectance method. This method is based on the determination of the complex reflection coefficient`s magnitude and phase at the solid-liquid interface. Although magnitude is a stable quantity and its measurement is relatively simple and precise, phase measurement is a difficult task because of strong temperature dependence. A simplified method that uses only the magnitude of the reflection coefficient and that is valid under the Newtonian regimen has been proposed by some authors, but the obtained viscosity values do not match conventional viscometry measurements. In this work, a mode conversion measurement cell was used to measure glycerin viscosity as a function of temperature (15 to 25 degrees C) and corn syrup-water mixtures as a function of concentration (70 to 100 wt% of corn syrup). Tests were carried out at 1 MHz. A novel signal processing technique that calculates the reflection coefficient magnitude in a frequency band, instead of a single frequency, was studied. The effects of the bandwidth on magnitude and viscosity were analyzed and the results were compared with the values predicted by the Newtonian liquid model. The frequency band technique improved the magnitude results. The obtained viscosity values came close to those measured by the rotational viscometer with percentage errors up to 14%, whereas errors up to 96% were found for the single frequency method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A number of mathematical models have been used to describe percutaneous absorption kinetics. In general, most of these models have used either diffusion-based or compartmental equations. The object of any mathematical model is to a) be able to represent the processes associated with absorption accurately, b) be able to describe/summarize experimental data with parametric equations or moments, and c) predict kinetics under varying conditions. However, in describing the processes involved, some developed models often suffer from being of too complex a form to be practically useful. In this chapter, we attempt to approach the issue of mathematical modeling in percutaneous absorption from four perspectives. These are to a) describe simple practical models, b) provide an overview of the more complex models, c) summarize some of the more important/useful models used to date, and d) examine sonic practical applications of the models. The range of processes involved in percutaneous absorption and considered in developing the mathematical models in this chapter is shown in Fig. 1. We initially address in vitro skin diffusion models and consider a) constant donor concentration and receptor conditions, b) the corresponding flux, donor, skin, and receptor amount-time profiles for solutions, and c) amount- and flux-time profiles when the donor phase is removed. More complex issues, such as finite-volume donor phase, finite-volume receptor phase, the presence of an efflux. rate constant at the membrane-receptor interphase, and two-layer diffusion, are then considered. We then look at specific models and issues concerned with a) release from topical products, b) use of compartmental models as alternatives to diffusion models, c) concentration-dependent absorption, d) modeling of skin metabolism, e) role of solute-skin-vehicle interactions, f) effects of vehicle loss, a) shunt transport, and h) in vivo diffusion, compartmental, physiological, and deconvolution models. We conclude by examining topics such as a) deep tissue penetration, b) pharmacodynamics, c) iontophoresis, d) sonophoresis, and e) pitfalls in modeling.