921 resultados para Signal detection


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We compare three alternative methods for eliciting retrospective confidence in the context of a simple perceptual task: the Simple Confidence Rating (a direct report on a numerical scale), the Quadratic Scoring Rule (a post-wagering procedure), and the Matching Probability (MP; a generalization of the no-loss gambling method). We systematically compare the results obtained with these three rules to the theoretical confidence levels that can be inferred from performance in the perceptual task using Signal Detection Theory (SDT). We find that the MP provides better results in that respect. We conclude that MP is particularly well suited for studies of confidence that use SDT as a theoretical framework.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The problem of detecting an unknown transient signal in noise is considered. The SNR of the observed data is first enhanced using wavelet domain filter The output of the wavelet domain filter is then transformed using a Wigner-Ville transform,which separates the spectrum of the observed signal into narrow frequency bands. Each subband signal at the output of the Wigner-ville block is subjected kto wavelet based level dependent denoising (WBLDD)to supress colored noise A weighted sum of the absolute value of outputs of WBLDD is passed through an energy detector, whose output is used as test statistic to take the final decision. By assigning weights proportional to the energy of the corresponding subband signals, the proposed detector approximates a frequency domain matched filter Simulation results are presented to show that the performance of the proposed detector is better than that of the wavelet packet transform based detector.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High sensitivity detection techniques are required for indoor navigation using Global Navigation Satellite System (GNSS) receivers, and typically, a combination of coherent and non- coherent integration is used as the test statistic for detection. The coherent integration exploits the deterministic part of the signal and is limited due to the residual frequency error, navigation data bits and user dynamics, which are not known apriori. So, non- coherent integration, which involves squaring of the coherent integration output, is used to improve the detection sensitivity. Due to this squaring, it is robust against the artifacts introduced due to data bits and/or frequency error. However, it is susceptible to uncertainty in the noise variance, and this can lead to fundamental sensitivity limits in detecting weak signals. In this work, the performance of the conventional non-coherent integration-based GNSS signal detection is studied in the presence of noise uncertainty. It is shown that the performance of the current state of the art GNSS receivers is close to the theoretical SNR limit for reliable detection at moderate levels of noise uncertainty. Alternate robust post-coherent detectors are also analyzed, and are shown to alleviate the noise uncertainty problem. Monte-Carlo simulations are used to confirm the theoretical predictions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper considers the problem of weak signal detection in the presence of navigation data bits for Global Navigation Satellite System (GNSS) receivers. Typically, a set of partial coherent integration outputs are non-coherently accumulated to combat the effects of model uncertainties such as the presence of navigation data-bits and/or frequency uncertainty, resulting in a sub-optimal test statistic. In this work, the test-statistic for weak signal detection is derived in the presence of navigation data-bits from the likelihood ratio. It is highlighted that averaging the likelihood ratio based test-statistic over the prior distributions of the unknown data bits and the carrier phase uncertainty leads to the conventional Post Detection Integration (PDI) technique for detection. To improve the performance in the presence of model uncertainties, a novel cyclostationarity based sub-optimal PDI technique is proposed. The test statistic is analytically characterized, and shown to be robust to the presence of navigation data-bits, frequency, phase and noise uncertainties. Monte Carlo simulation results illustrate the validity of the theoretical results and the superior performance offered by the proposed detector in the presence of model uncertainties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the formulation and performance analysis of four techniques for detection of a narrowband acoustic source in a shallow range-independent ocean using an acoustic vector sensor (AVS) array. The array signal vector is not known due to the unknown location of the source. Hence all detectors are based on a generalized likelihood ratio test (GLRT) which involves estimation of the array signal vector. One non-parametric and three parametric (model-based) signal estimators are presented. It is shown that there is a strong correlation between the detector performance and the mean-square signal estimation error. Theoretical expressions for probability of false alarm and probability of detection are derived for all the detectors, and the theoretical predictions are compared with simulation results. It is shown that the detection performance of an AVS array with a certain number of sensors is equal to or slightly better than that of a conventional acoustic pressure sensor array with thrice as many sensors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The performance of postdetection integration (PDI) techniques for the detection of Global Navigation Satellite Systems (GNSS) signals in the presence of uncertainties in frequency offsets, noise variance, and unknown data-bits is studied. It is shown that the conventional PDI techniques are generally not robust to uncertainty in the data-bits and/or the noise variance. Two new modified PDI techniques are proposed, and they are shown to be robust to these uncertainties. The receiver operating characteristics (ROC) and sample complexity performance of the PDI techniques in the presence of model uncertainties are analytically derived. It is shown that the proposed methods significantly outperform existing methods, and hence they could become increasingly important as the GNSS receivers attempt to push the envelope on the minimum signal-to-noise ratio (SNR) for reliable detection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a nonlinear suboptimal detector whose performance in heavy-tailed noise is significantly better than that of the matched filter is proposed. The detector consists of a nonlinear wavelet denoising filter to enhance the signal-to-noise ratio, followed by a replica correlator. Performance of the detector is investigated through an asymptotic theoretical analysis as well as Monte Carlo simulations. The proposed detector offers the following advantages over the optimal (in the Neyman-Pearson sense) detector: it is easier to implement, and it is more robust with respect to error in modeling the probability distribution of noise.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we consider signal detection in nt × nr underdetermined MIMO (UD-MIMO) systems, where i) nt >; nr with a overload factor α = nt over nr >; 1, ii) nt symbols are transmitted per channel use through spatial multiplexing, and iii) nt, nr are large (in the range of tens). A low-complexity detection algorithm based on reactive tabu search is considered. A variable threshold based stopping criterion is proposed which offers near-optimal performance in large UD-MIMO systems at low complexities. A lower bound on the maximum likelihood (ML) bit error performance of large UD-MIMO systems is also obtained for comparison. The proposed algorithm is shown to achieve BER performance close to the ML lower bound within 0.6 dB at an uncoded BER of 10-2 in 16 × 8 V-BLAST UD-MIMO system with 4-QAM (32 bps/Hz). Similar near-ML performance results are shown for 32 × 16, 32 × 24 V-BLAST UD-MIMO with 4-QAM/16-QAM as well. A performance and complexity comparison between the proposed algorithm and the λ-generalized sphere decoder (λ-GSD) algorithm for UD-MIMO shows that the proposed algorithm achieves almost the same performance of λ-GSD but at a significantly lesser complexity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two-dimensional magnetic recording (2-D TDMR) is an emerging technology that aims to achieve areal densities as high as 10 Tb/in(2) using sophisticated 2-D signal-processing algorithms. High areal densities are achieved by reducing the size of a bit to the order of the size of magnetic grains, resulting in severe 2-D intersymbol interference (ISI). Jitter noise due to irregular grain positions on the magnetic medium is more pronounced at these areal densities. Therefore, a viable read-channel architecture for TDMR requires 2-D signal-detection algorithms that can mitigate 2-D ISI and combat noise comprising jitter and electronic components. Partial response maximum likelihood (PRML) detection scheme allows controlled ISI as seen by the detector. With the controlled and reduced span of 2-D ISI, the PRML scheme overcomes practical difficulties such as Nyquist rate signaling required for full response 2-D equalization. As in the case of 1-D magnetic recording, jitter noise can be handled using a data-dependent noise-prediction (DDNP) filter bank within a 2-D signal-detection engine. The contributions of this paper are threefold: 1) we empirically study the jitter noise characteristics in TDMR as a function of grain density using a Voronoi-based granular media model; 2) we develop a 2-D DDNP algorithm to handle the media noise seen in TDMR; and 3) we also develop techniques to design 2-D separable and nonseparable targets for generalized partial response equalization for TDMR. This can be used along with a 2-D signal-detection algorithm. The DDNP algorithm is observed to give a 2.5 dB gain in SNR over uncoded data compared with the noise predictive maximum likelihood detection for the same choice of channel model parameters to achieve a channel bit density of 1.3 Tb/in(2) with media grain center-to-center distance of 10 nm. The DDNP algorithm is observed to give similar to 10% gain in areal density near 5 grains/bit. The proposed signal-processing framework can broadly scale to various TDMR realizations and areal density points.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The abundance of many commercially important fish stocks are declining and this has led to widespread concern on the performance of traditional approach in fisheries management. Quantitative models are used for obtaining estimates of population abundance and the management advice is based on annual harvest levels (TAC), where only a certain amount of catch is allowed from specific fish stocks. However, these models are data intensive and less useful when stocks have limited historical information. This study examined whether empirical stock indicators can be used to manage fisheries. The relationship between indicators and the underlying stock abundance is not direct and hence can be affected by disturbances that may account for both transient and persistent effects. Methods from Statistical Process Control (SPC) theory such as the Cumulative Sum (CUSUM) control charts are useful in classifying these effects and hence they can be used to trigger management response only when a significant impact occurs to the stock biomass. This thesis explores how empirical indicators along with CUSUM can be used for monitoring, assessment and management of fish stocks. I begin my thesis by exploring various age based catch indicators, to identify those which are potentially useful in tracking the state of fish stocks. The sensitivity and response of these indicators towards changes in Spawning Stock Biomass (SSB) showed that indicators based on age groups that are fully selected to the fishing gear or Large Fish Indicators (LFIs) are most useful and robust across the range of scenarios considered. The Decision-Interval (DI-CUSUM) and Self-Starting (SS-CUSUM) forms are the two types of control charts used in this study. In contrast to the DI-CUSUM, the SS-CUSUM can be initiated without specifying a target reference point (‘control mean’) to detect out-of-control (significant impact) situations. The sensitivity and specificity of SS-CUSUM showed that the performances are robust when LFIs are used. Once an out-of-control situation is detected, the next step is to determine how much shift has occurred in the underlying stock biomass. If an estimate of this shift is available, they can be used to update TAC by incorporation into Harvest Control Rules (HCRs). Various methods from Engineering Process Control (EPC) theory were tested to determine which method can measure the shift size in stock biomass with the highest accuracy. Results showed that methods based on Grubb’s harmonic rule gave reliable shift size estimates. The accuracy of these estimates can be improved by monitoring a combined indicator metric of stock-recruitment and LFI because this may account for impacts independent of fishing. The procedure of integrating both SPC and EPC is known as Statistical Process Adjustment (SPA). A HCR based on SPA was designed for DI-CUSUM and the scheme was successful in bringing out-of-control fish stocks back to its in-control state. The HCR was also tested using SS-CUSUM in the context of data poor fish stocks. Results showed that the scheme will be useful for sustaining the initial in-control state of the fish stock until more observations become available for quantitative assessments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Les quatre principales activités de la gestion de risque thérapeutique comportent l’identification, l’évaluation, la minimisation, et la communication du risque. Ce mémoire aborde les problématiques liées à l’identification et à la minimisation du risque par la réalisation de deux études dont les objectifs sont de: 1) Développer et valider un outil de « data mining » pour la détection des signaux à partir des banques de données de soins de santé du Québec; 2) Effectuer une revue systématique afin de caractériser les interventions de minimisation de risque (IMR) ayant été implantées. L’outil de détection de signaux repose sur la méthode analytique du quotient séquentiel de probabilité (MaxSPRT) en utilisant des données de médicaments délivrés et de soins médicaux recueillis dans une cohorte rétrospective de 87 389 personnes âgées vivant à domicile et membres du régime d’assurance maladie du Québec entre les années 2000 et 2009. Quatre associations « médicament-événement indésirable (EI) » connues et deux contrôles « négatifs » ont été utilisés. La revue systématique a été faite à partir d’une revue de la littérature ainsi que des sites web de six principales agences réglementaires. La nature des RMIs ont été décrites et des lacunes de leur implémentation ont été soulevées. La méthode analytique a mené à la détection de signaux dans l'une des quatre combinaisons médicament-EI. Les principales contributions sont: a) Le premier outil de détection de signaux à partir des banques de données administratives canadiennes; b) Contributions méthodologiques par la prise en compte de l'effet de déplétion des sujets à risque et le contrôle pour l'état de santé du patient. La revue a identifié 119 IMRs dans la littérature et 1,112 IMRs dans les sites web des agences réglementaires. La revue a démontré qu’il existe une augmentation des IMRs depuis l’introduction des guides réglementaires en 2005 mais leur efficacité demeure peu démontrée.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper specifically examines the implantation of a microelectrode array into the median nerve of the left arm of a healthy male volunteer. The objective was to establish a bi-directional link between the human nervous system and a computer, via a unique interface module. This is the first time that such a device has been used with a healthy human. The aim of the study was to assess the efficacy, compatibility, and long term operability of the neural implant in allowing the subject to perceive feedback stimulation and for neural activity to be detected and processed such that the subject could interact with remote technologies. A case study demonstrating real-time control of an instrumented prosthetic hand by means of the bi-directional link is given. The implantation did not result in infection, and scanning electron microscope images of the implant post extraction have not indicated significant rejection of the implant by the body. No perceivable loss of hand sensation or motion control was experienced by the subject while the implant was in place, and further testing of the subject following the removal of the implant has not indicated any measurable long term defects. The implant was extracted after 96 days. Copyright © 2004 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most research on Distributed Space-Time Block Coding (D-STBC) has so far focused on the case of 2 relay nodes and assumed that the relay nodes are perfectly synchronised at the symbol level. This paper applies STBC to 4-relaynode systems under quasi-synchronisation and derives a new detector based on parallel interference cancellation, which proves to be very effective in suppressing the impact of imperfect synchronisation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One major assumption in all orthogonal space-time block coding (O-STBC) schemes is that the channel remains static over the length of the code word. However, time-selective fading channels do exist, and in such case conventional O-STBC detectors can suffer from a large error floor in the high signal-to-noise ratio (SNR) cases. As a sequel to the authors' previous papers on this subject, this paper aims to eliminate the error floor of the H(i)-coded O-STBC system (i = 3 and 4) by employing the techniques of: 1) zero forcing (ZF) and 2) parallel interference cancellation (PIC). It is. shown that for an H(i)-coded system the PIC is a much better choice than the ZF in terms of both performance and computational complexity. Compared with the, conventional H(i) detector, the PIC detector incurs a moderately higher computational complexity, but this can well be justified by the enormous improvement.