939 resultados para Siegel modular forms


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Rankin convolution type Dirichlet series D-F,D-G(s) of Siegel modular forms F and G of degree two, which was introduced by Kohnen and the second author, is computed numerically for various F and G. In particular, we prove that the series D-F,D-G(s), which shares the same functional equation and analytic behavior with the spinor L-functions of eigenforms of the same weight are not linear combinations of those. In order to conduct these experiments a numerical method to compute the Petersson scalar products of Jacobi Forms is developed and discussed in detail.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We carry out some computations of vector-valued Siegel modular forms of degree two, weight (k, 2) and level one, and highlight three experimental results: (1) we identify a rational eigenform in a three-dimensional space of cusp forms; (2) we observe that non-cuspidal eigenforms of level one are not always rational; (3) we verify a number of cases of conjectures about congruences between classical modular forms and Siegel modular forms. Our approach is based on Satoh's description of the module of vector-valued Siegel modular forms of weight (k, 2) and an explicit description of the Hecke action on Fourier expansions. (C) 2013 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A conjecture by Harder shows a surprising congruence between the coefficients of “classical” modular forms and the Hecke eigenvalues of corresponding Siegel modular forms, contigent upon “large primes” dividing the critical values of the given classical modular form. Harder’s Conjecture has already been verified for one-dimensional spaces of classical and Siegel modular forms (along with some two-dimensional cases), and for primes p 37. We verify the conjecture for higher-dimensional spaces, and up to a comparable prime p.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study congruences in the coefficients of modular and other automorphic forms. Ramanujan famously found congruences for the partition function like p(5n+4) = 0 mod 5. For a wide class of modular forms, we classify the primes for which there can be analogous congruences in the coefficients of the Fourier expansion. We have several applications. We describe the Ramanujan congruences in the counting functions for overparitions, overpartition pairs, crank differences, and Andrews' two-coloured generalized Frobenius partitions. We also study Ramanujan congruences in the Fourier coefficients of certain ratios of Eisenstein series. We also determine the exact number of holomorphic modular forms with Ramanujan congruences when the weight is large enough. In a chapter based on joint work with Olav Richter, we study Ramanujan congruences in the coefficients of Jacobi forms and Siegel modular forms of degree two. Finally, the last chapter contains a completely unrelated result about harmonic weak Maass forms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In 1984 Jutila [5] obtained a transformation formula for certain exponential sums involving the Fourier coefficients of a holomorphic cusp form for the full modular group SL(2, Z). With the help of the transformation formula he obtained good estimates for the distance between consecutive zeros on the critical line of the Dirichlet series associated with the cusp form and for the order of the Dirichlet series on the critical line, [7]. In this paper we follow Jutila to obtain a transformation formula for exponential sums involving the Fourier coefficients of either holomorphic cusp forms or certain Maass forms for congruence subgroups of SL(2, Z) and prove similar estimates for the corresponding Dirichlet series.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sign changes of Fourier coefficients of various modular forms have been studied. In this paper, we analyze some sign change properties of Fourier coefficients of Hilbert modular forms, under the assumption that all the coefficients are real. The quantitative results on the number of sign changes in short intervals are also discussed. (C) 2014 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We prove a nonvanishing result for Koecher-Maass series attached to Siegel cusp forms of weight k and degree n in certain strips on the complex plane. When n = 2, we prove such a result for forms orthogonal to the space of the Saito-Kurokawa lifts `up to finitely many exceptions', in bounded regions. (C) 2015 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We prove a sub-convex estimate for the sup-norm of L-2-normalized holomorphic modular forms of weight k on the upper half plane, with respect to the unit group of a quaternion division algebra over Q. More precisely we show that when the L-2 norm of an eigenfunction f is one, parallel to f parallel to(infinity) <<(epsilon) k(1/2-1/33+epsilon) for any epsilon > 0 and for all k sufficiently large.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we present a survey of the recent results on the characterization of the cuspidality of classical modular forms on various groups by a suitable growth of their Fourier coefficients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Let M-k(#)(N) be the space of weakly holomorphic modular forms for Gamma(0)(N) that are holomorphic at all cusps except possibly at infinity. We study a canonical basis for M-k(#)(2) and M-k(#)(3) and prove that almost all modular forms in this basis have the property that the majority of their zeros in a fundamental domain lie on a lower boundary arc of the fundamental domain.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the last 15 years, many class number formulas and main conjectures have been proven. Here, we discuss such formulas on the Selmer groups of the three-dimensional adjoint representation ad(φ) of a two-dimensional modular Galois representation φ. We start with the p-adic Galois representation φ0 of a modular elliptic curve E and present a formula expressing in terms of L(1, ad(φ0)) the intersection number of the elliptic curve E and the complementary abelian variety inside the Jacobian of the modular curve. Then we explain how one can deduce a formula for the order of the Selmer group Sel(ad(φ0)) from the proof of Wiles of the Shimura–Taniyama conjecture. After that, we generalize the formula in an Iwasawa theoretic setting of one and two variables. Here the first variable, T, is the weight variable of the universal p-ordinary Hecke algebra, and the second variable is the cyclotomic variable S. In the one-variable case, we let φ denote the p-ordinary Galois representation with values in GL2(Zp[[T]]) lifting φ0, and the characteristic power series of the Selmer group Sel(ad(φ)) is given by a p-adic L-function interpolating L(1, ad(φk)) for weight k + 2 specialization φk of φ. In the two-variable case, we state a main conjecture on the characteristic power series in Zp[[T, S]] of Sel(ad(φ) ⊗ ν−1), where ν is the universal cyclotomic character with values in Zp[[S]]. Finally, we describe our recent results toward the proof of the conjecture and a possible strategy of proving the main conjecture using p-adic Siegel modular forms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We discuss the relationship among certain generalizations of results of Hida, Ribet, and Wiles on congruences between modular forms. Hida’s result accounts for congruences in terms of the value of an L-function, and Ribet’s result is related to the behavior of the period that appears there. Wiles’ theory leads to a class number formula relating the value of the L-function to the size of a Galois cohomology group. The behavior of the period is used to deduce that a formula at “nonminimal level” is obtained from one at “minimal level” by dropping Euler factors from the L-function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study N = 2 compactifications of heterotic string theory on the CHL orbifold (K3 x T-2)/Z(N) with N = 2, 3, 5, 7. Z(N) acts as an automorphism on K3 together with a shift of 1/N along one of the circles of T-2. These compactifications generalize the example of the heterotic string on K3 x T-2 studied in the context of dualities in string theories. We evaluate the new supersymmetric index for these theories and show that their expansion can be written in terms of the McKay-Thompson series associated with the Z(N) automorphism embedded in the Mathieu group M-24. We then evaluate the difference in one-loop threshold corrections to the non-Abelian gauge couplings with Wilson lines and show that their moduli dependence is captured by Siegel modular forms related to dyon partition functions of N = 4 string theories.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study N = 2 compactifications of heterotic string theory on the CHL orbifold (K3 x T-2)/Z(N) with N = 2, 3, 5, 7. Z(N) acts as an automorphism on K3 together with a shift of 1/N along one of the circles of T-2. These compactifications generalize the example of the heterotic string on K3 x T-2 studied in the context of dualities in string theories. We evaluate the new supersymmetric index for these theories and show that their expansion can be written in terms of the McKay-Thompson series associated with the Z(N) automorphism embedded in the Mathieu group M-24. We then evaluate the difference in one-loop threshold corrections to the non-Abelian gauge couplings with Wilson lines and show that their moduli dependence is captured by Siegel modular forms related to dyon partition functions of N = 4 string theories.