988 resultados para Shrinkage-Induced Cracking


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new numerical procedure is proposed to investigate cracking behaviors induced by mismatch between the matrix phase and aggregates due to matrix shrinkage in cement-based composites. This kind of failure processes is simplified in this investigation as a purely spontaneous mechanical problem, therefore, one main difficulty during simulating the phenomenon lies that no explicit external load serves as the drive to propel development of this physical process. As a result, it is different from classical mechanical problems and seems hard to be solved by using directly the classical finite element method (FEM), a typical kind of "load -> medium -> response" procedures. As a solution, the actual mismatch deformation field is decomposed into two virtual fields, both of which can be obtained by the classical FEM. Then the actual response is obtained by adding together the two virtual displacement fields based on the principle of superposition. Then, critical elements are detected successively by the event-by-event technique. The micro-structure of composites is implemented by employing the generalized beam (GB) lattice model. Numerical examples are given to show the effectiveness of the method, and detailed discussions are conducted on influences of material properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a theoretical model for studying the effects of shrinkage induced flow on the growth rate of binary alloy dendrites. An equivalent undercooling of the melt is defined in terms of ratio of the phase densities to represent the change in dendrite growth rate due to variation in solutal and thermal transport resulting from shrinkage induced flow. Subsequently, results for dendrite growth rate predicted by the equivalent undercooling model is compared with the corresponding predictions obtained using an enthalpy based numerical method for dendrite growth with shrinkage. The agreement is found to be good. Published by Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, the thermally induced cracking behavior of a segmented coating has been investigated. The geometry under consideration is a hollow cylinder with a segmented coating deposited onto its outer surface. The segmentation cracks are modeled as a periodic array of axial edge cracks. The finite element method is utilized to obtain the solution of the multiple crack problem and the Thermal Stress Intensity Factors (TSIFs) are calculated. Based on dimensional analysis, the main parameters affecting TSIFs are identified. It has been found that the TSIF is a monotonically increasing function of segmentation crack spacing. This result confirms that a segmented coating exhibits much higher thermal shock resistance than an intact counterpart, if only the segmentation crack spacing is narrow enough. The dependence of TSIF on some other parameters, such as normalized time, segmentation crack depth, convection severity as well as material constants, has also been discussed. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present study the tensile and super-elastic behaviours of laser-welded NiTi wires in Hanks’ solution at open-circuit potential (OCP) were investigated using tensile and cyclic slow-strain-rate tests (SSRT). In comparison with NiTi weldment tested in oil (non-corrosive environment), the weldment in Hanks’ solution suffered from obvious degradation in the tensile properties as evidenced by lower tensile strength, reduced maximum elongation, and a brittle fracture mode. Moreover, a larger residual strain was observed in the weldment after stress–strain cycles in Hanks’ solution. In addition to the microstructural defects resulting from the welding process, the inferior tensile and super-elastic behaviours of the NiTi weldment in Hanks’ solution could be attributed to the trapping of a large amount of hydrogen in the weld zone and heat-affected zone.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, the environmentally induced cracking behaviour of the NiTi weldment with and without post-weld heat-treatment (PWHT) in Hanks’ solution at 37.5 °C at OCP were studied by tensile and cyclic slow-strain-rate tests (SSRT), and compared with those tested in oil (an inert environment). Our previous results in the tensile and cyclic SSRT showed that the weldment without PWHT showed high susceptibility to the hydrogen cracking, as evidenced by the degradation of tensile and super-elastic properties when testing in Hanks' solution. The weldment after PWHT was much less susceptible to hydrogen attack in Hanks' solution as no obvious degradation in the tensile and super-elastic properties was observed, and only a very small amount of micro-cracks were found in the fracture surface. The susceptibility to hydrogen cracking of the NiTi weldment could be alleviated by applying PWHT at the optimized temperature of 350 °C after laser welding.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Based on extensive research on reinforcing steel corrosion in concrete in the past decades, it is now possible to estimate the effect of the progression of reinforcement corrosion in concrete infrastructure on its structural performance. There are still areas of considerable uncertainty in the models and in the data available, however This paper uses a recently developed model for reinforcement corrosion in concrete to improve the estimation process and to indicate the practical implications. In particular stochastic models are used to estimate the time likely to elapse for each phase of the whole corrosion process: initiation, corrosion-induced concrete cracking, and structural strength reduction. It was found that, for practical flexural structures subject to chloride attacks, corrosion initiation may start quite early in their service life. It was also found that, once the structure is considered to be unserviceable due to corrosion-induced cracking, there is considerable remaining service life before the structure can be considered to have become unsafe. The procedure proposed in the paper has the potential to serve as a rational tool for practitioners, operators, and asset managers to make decisions about the optimal timing of repairs, strengthening, and/or rehabilitation of corrosion-affected concrete infrastructure. Timely intervention has the potential to prolong the service life of infrastructure.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this work, cracking of concrete due to steel reinforcement corrosion is experimentally and numerically studied. The tests combined accelerated corrosion—to generate the cracks—with impregnation under vacuum with resin containing fluorescein—to enhance their visibility under ultraviolet light. In parallel, a model—called expansive joint element—was developed to simulate the expansion of the oxide and finite elements with an embedded adaptable cohesive crack were used to describe concrete cracking. The results show that a good agreement exists between the experimental and numerical crack patterns, which constitutes promising progress towards a comprehensive understanding of corrosion-induced cracking in reinforced concrete.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents a material model to simulate load induced cracking in Reinforced Concrete (RC) elements in ABAQUS finite element package. Two numerical material models are used and combined to simulate complete stress-strain behaviour of concrete under compression and tension including damage properties. Both numerical techniques used in the present material model are capable of developing the stress-strain curves including strain softening regimes only using ultimate compressive strength of concrete, which is easily and practically obtainable for many of the existing RC structures or those to be built. Therefore, the method proposed in this paper is valuable in assessing existing RC structures in the absence of more detailed test results. The numerical models are slightly modified from the original versions to be comparable with the damaged plasticity model used in ABAQUS. The model is validated using different experiment results for RC beam elements presented in the literature. The results indicate a good agreement with load vs. displacement curve and observed crack patterns.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

OFHC copper pins with 10 ppm oxygen were slid against alumina at a load of 50 N and sliding speeds of 0.1 ms(-1) to 4.0 ms(-1) The wear characteristics of copper were related to the strain rate response of copper under uniaxial compression between strain rates of 0.1 s(-1) and 100 s(-1) and temperatures in the range of 298 K to 673 K. It is seen that copper undergoes flow banding at strain rates of 1 s(-1) up to a temperature of 523 K, which is the major instability in the region tested. These flow bands are regions of crack nucleation. The strain rates and temperatures existing in the subsurface of copper slid against alumina are estimated and superimposed on the strain rate response map of copper. The superposition shows that the subsurface of copper slid at low velocities is likely to exhibit flow band instability induced cracking. It is suggested that this is the,reason for the observed high wear rate at low velocities. The subsurface deformation with increasing velocity becomes more homogeneous. This reduces the wear rate. At velocities >2 ms(-1) there is homogenous flow and extrusion of thin (10 mu m) bands of material out of the trailing edge. This results in the gradual increase of wear rate with increasing velocity above 2.0 ms(-1).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The growth techniques which have enabled the realization of InGaN-based multi-quantum-well (MQW) structures with high internal quantum efficiencies (IQE) on 150mm (6-in.) silicon substrates are reviewed. InGaN/GaN MQWs are deposited onto GaN templates on large-area (111) silicon substrates, using AlGaN strain-mediating interlayers to inhibit thermal-induced cracking and wafer-bowing, and using a SiN x interlayer to reduce threading dislocation densities in the active region of the MQW structure. MQWs with high IQE approaching 60% have been demonstrated. Atomic resolution electron microscopy and EELS analysis have been used to study the nature of the important interface between the Si(111) substrate and the AlN nucleation layer. We demonstrate an amorphous SiN x interlayer at the interface about 2nm wide, which does not, however, prevent good epitaxy of the AlN on the Si(111) substrate. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

氢致开裂以及氢脆现象一直是困扰着石油生产及石油化工的一个重要问题。钢材的氢脆易造成巨大的腐蚀灾难。目前,随着石油开采钻井的深度的加深,石油开采中钢材所处的环境越来越恶劣。硫化氢,二氧化碳以及盐水等腐蚀介质可导致普通腐蚀,硫化物腐蚀,二氧化碳腐蚀,氢的渗透等腐蚀现象。这些腐蚀现象的存在,大大限制了石油工业的发展。硫化氢的存在可引起钢材的氢脆现象,给安全生产带来极大的隐患。然而,研究者对于氢脆现象的研究大部分是在本体溶液中的,对于在大气腐蚀中的氢脆现象的研究并不多见,并且对于动载条件下的氢渗透研究更为鲜见。 本文通过电化学研究方法及慢应变速率拉伸试验(SSRT)研究了从实验室模拟到实际海洋大气环境中,海洋大气对材料渗氢性能的影响及对材料应力腐蚀敏感性的影响,特别是在硫化氢及二氧化硫存在的条件下的影响。结果表明,从实验室模拟到实际海洋大气环境,材料都存在氢渗透现象,硫化氢及二氧化硫的存在可加速材料氢渗透现象,材料应力腐蚀敏感性也随其浓度的增大而增大。结合SEM实验结果,随硫化氢及二氧化硫浓度增大,金属材料由韧性断裂向脆性断裂转变。腐蚀失重实验表明,腐蚀失重与材料氢渗透量之间存在着线性关系。据此研制腐蚀失重传感器,实验结果表明,传感器结果与实际腐蚀失重结果一致,并且该传感器使用方便,可原位、随时、便捷地调查材料腐蚀失重,具有高适应性、高灵敏度的特点。 本文还研究了动载条件下,海洋大气环境中形变对材料氢渗透现象的影响。结果表明,弹性变形阶段,氢渗透电流变化不大,当试样屈服后,氢渗透电流突然下降,然后又回复到一个稳定值,这与氢陷阱的形成有关。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper describes the condition of a reinforced concrete balustrade consisting of some 1000 individual beam elements all exposed similarly to the hostile marine environment of the North Sea at Arbroath, Scotland since 1943. A comparison is made of the condition of the original construction with the condition of repairs carried out in 1968 and in 1993. It is shown that the 1943 construction shows very little corrosion-induced cracking and little rust staining even though it does not appear to be of high construction quality. Only a very low percentage of the balustrade beams have been replaced. In contrast the beam installed in 1968 and later in 1993 show very considerable and large concrete cracks directly attributable to the corrosion of the longitudinal reinforcement, even though the concrete is of a higher quality and density. A detailed condition survey and statistics of crack sizes are presented in the paper. It is found that the higher corrosion resistance of the 1943 concrete is generally consistent with the concrete electrical resistivity measurements but the degree of corrosion of the reinforcing bars is inconsistent with chloride penetration measurements. The results are compared with the very few observations available in the literature for ageing concrete structures in marine environments. The results cast doubt on the conventional wisdom that chloride content at the reinforcement correlates well with reinforcement corrosion.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This thesis focuses on the tribological performance of tool surfaces in two steel working operations, namely wire drawing and hot rolling. In all forming operations dimensions and surface finish of the products are of utmost importance. Forming basically includes three parts – forming conditions excluded – that may be changed; work material, tool and (possibly) lubricant. In the interface between work material and tool, the conditions are very aggressive with – generally or locally – high temperatures and pressures. The surfaces will be worn in various ways and this will change the conditions in the process. Consequently, the surface finish as well as the dimensions of the formed product may change and in the end, the product will not fulfil the requirements of the customer. Therefore, research and development in regard to wear, and consequently tribology, of the forming tools is of great interest. The investigations of wire drawing dies focus on coating adhesion/cohesion, surface characteristics and material transfer onto the coated steel both in laboratory scale as well as in the wire drawing process. Results show that it in wire drawing is possible to enhance the tribological performance of drawing dies by using a lubricant together with a steel substrate coated by a polished, dual-layer coating containing both hard and friction-lowering layers. The investigations of hot rolling work rolls focus on microstructure and hardness as well as cracking- and surface characteristics in both laboratory scale and in the hot strip mill. Results show that an ideal hot work roll material should be made up of a matrix with high hardness and a large amount of complex, hard carbides evenly distributed in the microstructure. The surface failure mechanisms of work rolls are very complex involving plastic deformation, abrasive wear, adhesive wear, mechanical and thermal induced cracking, material transfer and oxidation. This knowledge may be used to develop new tools with higher wear resistance giving better performance, lower costs and lower environmental impact.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The surface failure characteristics of different work roll materials, i.e. High Speed Steel, High Chromium Iron and Indefinite Chill Iron, used in the finishing stands of a hot strip mill have been investigated using stereo microscopy, 3D optical profilometry, scanning electron microscopy and energy dispersive X-ray spectroscopy. The results show that the surface failure mechanisms of work rolls for hot rolling are very complex, involving plastic deformation, abrasive wear, adhesive wear, mechanical and thermal induced cracking, material transfer and oxidation. Despite the differences in chemical composition and microstructure, the tribological response of the different work roll materials was found to be strongly dependent on the material microstructure and especially the presence and distribution of microstructural constituents, such as the different carbide phases and graphite (in the case of Indefinite Chill Iron). Cracking and chipping of the work roll surfaces, both having a negative impact on work roll wear, are strongly influenced by the presence of carbides, carbide networks and graphite in the work roll surface. Consequently, the amount of carbide forming elements as well as the manufacturing process must be controlled in order to obtain an optimised microstructure and a predictable wear rate.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

o presente trabalho teve por objetivo estudar o comportamento de um aço de alta resistência e baixa liga (com amostras de composição aproximada de 0,4% C, 0,6% Cr e 0,4% Mo), da classe API scr PIlO, utilizado na perfuração de petróleo offshore, frente a processos de fragilização causados pelo meio. Água do mar sintética foi utilizada como meio, com intuito de padronizar, em laboratório, as condições a que o material fica submetido na prática. Buscou-se avaliar e comparar o comportamento mecânico do material pela modificação dos parâmetros: temperatura, potencial aplicado ao material, e o efeito da presença ou ausência de H2S na solução. Para isso, foram realizados ensaios de tração pelo método de baixa taxa de deformação (da ordem de 10-6S-I), obtendo-se as curvas tensão x deformação nas diferentes situações ensaiadas, comparadas com as obtidas em óleo mineral. Análises fratográficas também foram utilizadas como forma de caracterizar os processos de fragilização. Além disso, estudou-se o comportamento eletroquímico do material nas diferentes condições através de ensaios de polarização potenciostáticos. Com isso, pode-se determinar quais as condições mais danosas e de maior risco para a utilização do material e em quais delas o seu uso é seguro. O aço estudado apresentou-se susceptível a processos de fragilização e todos os parâmetros analisados mostraram-se importantes no estudo desses processos.