950 resultados para Shock endotóxico
Resumo:
[Tesis] (Doctor en Ciencias con Especialidad en Microbiología) U.A.N.L.
Resumo:
The purpose of this paper is to determine the prevalence of the toxic shock toxin gene (tst) and to enumerate the circulating strains of methicillin-sensitive Staphylococcus aureus (MSSA) and methicillin-resistant S. aureus (MRSA) in Australian isolates collected over two decades. The aim was to subtype these strains using the binary genes pvl, cna, sdrE, pUB110 and pT181. Isolates were assayed using real-time polymerase chain reaction (PCR) for mecA, nuc, 16 S rRNA, eight single-nucleotide polymorphisms (SNPs) and for five binary genes. Two realtime PCR assays were developed for tst. The 90 MRSA isolates belonged to CC239 (39 in 1989, 38 in 1996 and ten in 2003), CC1 (two in 2003) and CC22 (one in 2003). The majority of the 210 MSSA isolates belonged to CC1 (26), CC5 (24) and CC78 (23). Only 18 isolates were tst-positive and only 15 were pvl-positive. Nine MSSA isolates belonged to five binary types of ST93, including two pvlpositive types. The proportion of tst-positive and pvl-positive isolates was low and no significant increase was demonstrated. Dominant MSSA clonal complexes were similar to those seen elsewhere, with the exception of CC78. CC239 MRSA (AUS-2/3) was the predominant MRSA but decreased significantly in prevalence, while CC22 (EMRSA-15) and CC1 (WA-1) emerged. Genetically diverse ST93 MSSA predated the emergence of ST93- MRSA (the Queensland clone).
Resumo:
Adiabatic compression testing of components in gaseous oxygen is a test method that is utilized worldwide and is commonly required to qualify a component for ignition tolerance under its intended service. This testing is required by many industry standards organizations and government agencies. This paper traces the background of adiabatic compression testing in the oxygen community and discusses the thermodynamic and fluid dynamic processes that occur during rapid pressure surges. This paper is the first of several papers by the authors on the subject of adiabatic compression testing and is presented as a non-comprehensive background and introduction.
Resumo:
The chapter investigates Shock Control Bumps (SCB) on a Natural Laminar Flow (NLF) aerofoil; RAE 5243 for Active Flow Control (AFC). A SCB approach is used to decelerate supersonic flow on the suction/pressure sides of transonic aerofoil that leads delaying shock occurrence or weakening of shock strength. Such an AFC technique reduces significantly the total drag at transonic speeds. This chapter considers the SCB shape design optimisation at two boundary layer transition positions (0 and 45%) using an Euler software coupled with viscous boundary layer effects and robust Evolutionary Algorithms (EAs). The optimisation method is based on a canonical Evolution Strategy (ES) algorithm and incorporates the concepts of hierarchical topology and parallel asynchronous evaluation of candidate solution. Two test cases are considered with numerical experiments; the first test deals with a transition point occurring at the leading edge and the transition point is fixed at 45% of wing chord in the second test. Numerical results are presented and it is demonstrated that an optimal SCB design can be found to significantly reduce transonic wave drag and improves lift on drag (L/D) value when compared to the baseline aerofoil design.
Resumo:
This study investigates the application of two advanced optimization methods for solving active flow control (AFC) device shape design problem and compares their optimization efficiency in terms of computational cost and design quality. The first optimization method uses hierarchical asynchronous parallel multi-objective evolutionary algorithm and the second uses hybridized evolutionary algorithm with Nash-Game strategies (Hybrid-Game). Both optimization methods are based on a canonical evolution strategy and incorporate the concepts of parallel computing and asynchronous evaluation. One type of AFC device named shock control bump (SCB) is considered and applied to a natural laminar flow (NLF) aerofoil. The concept of SCB is used to decelerate supersonic flow on suction/pressure side of transonic aerofoil that leads to a delay of shock occurrence. Such active flow technique reduces total drag at transonic speeds which is of special interest to commercial aircraft. Numerical results show that the Hybrid-Game helps an EA to accelerate optimization process. From the practical point of view, applying a SCB on the suction and pressure sides significantly reduces transonic total drag and improves lift-to-drag (L/D) value when compared to the baseline design.
Resumo:
The paper investigates a detailed Active Shock Control Bump Design Optimisation on a Natural Laminar Flow (NLF) aerofoil; RAE 5243 to reduce cruise drag at transonic flow conditions using Evolutionary Algorithms (EAs) coupled to a robust design approach. For the uncertainty design parameters, the positions of boundary layer transition (xtr) and the coefficient of lift (Cl) are considered (250 stochastic samples in total). In this paper, two robust design methods are considered; the first approach uses a standard robust design method, which evaluates one design model at 250 stochastic conditions for uncertainty. The second approach is the combination of a standard robust design method and the concept of hierarchical (multi-population) sampling (250, 50, 15) for uncertainty. Numerical results show that the evolutionary optimization method coupled to uncertainty design techniques produces useful and reliable Pareto optimal SCB shapes which have low sensitivity and high aerodynamic performance while having significant total drag reduction. In addition,it also shows the benefit of using hierarchical robust method for detailed uncertainty design optimization.
Resumo:
OBJECTIVE: : Acute traumatic coagulopathy occurs early in hemorrhagic trauma and is a major contributor to mortality and morbidity. Our aim was to examine the effect of small-volume 7.5% NaCl adenocaine (adenosine and lidocaine, adenocaine) and Mg on hypotensive resuscitation and coagulopathy in the rat model of severe hemorrhagic shock. DESIGN: : Prospective randomized laboratory investigation. SUBJECTS: : A total of 68 male Sprague Dawley Rats. INTERVENTION: : Post-hemorrhagic shock treatment for acute traumatic coagulopathy. MEASUREMENTS AND METHODS: : Nonheparinized male Sprague-Dawley rats (300-450 g, n = 68) were randomly assigned to either: 1) untreated; 2) 7.5% NaCl; 3) 7.5% NaCl adenocaine; 4) 7.5% NaCl Mg; or 5) 7.5% NaCl adenocaine/Mg. Hemorrhagic shock was induced by phlebotomy to mean arterial pressure of 35-40 mm Hg for 20 mins (~40% blood loss), and animals were left in shock for 60 mins. Bolus (0.3 mL) was injected into the femoral vein and hemodynamics monitored. Blood was collected in Na citrate (3.2%) tubes, centrifuged, and the plasma snap frozen in liquid N2 and stored at -80°C. Coagulation was assessed using activated partial thromboplastin times and prothrombin times. RESULTS: : Small-volume 7.5% NaCl adenocaine and 7.5% NaCl adenocaine/Mg were the only two groups that gradually increased mean arterial pressure 1.6-fold from 38-39 mm Hg to 52 and 64 mm Hg, respectively, at 60 mins (p < .05). Baseline plasma activated partial thromboplastin time was 17 ± 0.5 secs and increased to 63 ± 21 secs after bleeding time, and 217 ± 32 secs after 60-min shock. At 60-min resuscitation, activated partial thromboplastin time values for untreated, 7.5% NaCl, 7.5% NaCl/Mg, and 7.5% NaCl adenocaine rats were 269 ± 31 secs, 262 ± 38 secs, 150 ± 43 secs, and 244 ± 38 secs, respectively. In contrast, activated partial thromboplastin time for 7.5% NaCl adenocaine/Mg was 24 ± 2 secs (p < .05). Baseline prothrombin time was 28 ± 0.8 secs (n = 8) and followed a similar pattern of correction. CONCLUSIONS: : Plasma activated partial thromboplastin time and prothrombin time increased over 10-fold during the bleed and shock periods prior to resuscitation, and a small-volume (~1 mL/kg) IV bolus of 7.5% NaCl AL/Mg was the only treatment group that raised mean arterial pressure into the permissive range and returned activated partial thromboplastin time and prothrombin time clotting times to baseline at 60 mins.