946 resultados para Shock Tube


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel flow-tagging technique is presented which was employed to measure gas velocities in the free stream of a shock tube. This method is based on the laser spectroscopic techniques of Laser-Enhanced Ionisation (LEI) and Laser-Induced Fluorescence (LIF). The flow in the shock tube is seeded with small amounts of sodium, and LEI is used to produce a substantial depletion of neutral sodium atom concentration in a well-defined region of the flow, by using two wavelength-resonance excitation and subsequent collisional ionisation. At a specific time delay, single-laser-pulse planar LIF is utilised to produce a two-dimensional (2-D) inverse image of the depleted tagged region downstream of the flow. By measuring the displacement of the tagged region, free stream velocities in a shock tube were determined. Large variations in the concentration of sodium seeded into the flow were observed and even in the presence of these large variations accurate free-stream velocity measurements were obtained. The experimentally determined value for velocity compares very well with the predicted velocity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Shock tubes have been used successfully by a number of investigators to study the biological effects of variations in environmental pressures (1,2,3). Recently an unusually versatile laboratory pressurization source became available with the capability of consistently reproducing a wide variety of pressure-time phenomena of durations equal to and well beyond those associated with the detonation of nuclear devices (4). Thus it became possible to supplement costly full-scale field research in blast biology carried out at the Nevada Test Site (5,6) by using an economical yet realistic laboratory tool. In one exploratory study employing pressure pulses of 5 to 10 sec duration wherein the times to max overpressure and the magnitudes of the overpressures were varied, a relatively high tolerance of biological media to pressures well over 150 psi was demonstrated (7). In contrast, the present paper will describe the relatively high biological susceptibility to long duration overpressures in which the pressure rises occurred in single and double fast-rising steps.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

At head of title: Cornell University, Graduate School of Aeronautical Engineering.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

At head of title: Combustion Dynamics Division, Air Force Office of Scientific Research, ARDC, Washington, D. C., File no. AF 18(600)-1332.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"This work was supported by the Air Research and Development Center, Griffis Air Force Base, New York."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"Contract AF 18(603)-10, Mechanics Division, Air Force Office of Scientific Research, ARDC, Washington."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Army Ordinance contract no. DA-04-495-Ord-19.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

At head of title: SSD-TDR-63-78. Report no. TDR-169 (3230-12)TR-3.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the gas-particle dynamics of a device designed for biological pre-clinical experiments. The device uses transonic/supersonic gas flow to accelerate microparticles such that they penetrate the outer skin layers. By using a shock tube coupled to a correctly expanded nozzle, a quasi-one-dimensional, quasi-steady flow (QSF) is produced to uniformly accelerate the microparticles. The system utilises a microparticle cassette (a diaphragm sealed container) that incorporates a jet mixing mechanism to stir the particles prior to diaphragm rupture. Pressure measurements reveal that a QSF exit period - suitable for uniformly accelerating microparticles - exists between 155 and 220 mus after diaphragm rupture. Immediately preceding the QSF period, a starting process secondary shock was shown to form with its (x,t) trajectory comparing well to theoretical estimates. To characterise the microparticle, flow particle image velocimetry experiments were conducted at the nozzle exit, using particle payloads with varying diameter (2.7-48 mu m), density (600-16,800 kg/m(3)) and mass (0.25-10 mg). The resultant microparticle velocities were temporally uniform. The experiments also show that the starting process does not significantly influence the microparticle nozzle exit velocities. The velocity distribution across the nozzle exit was also uniform for the majority of microparticle types tested. For payload masses typically used in pre-clinical drug and vaccine applications (

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A unique hand-held gene gun is employed for ballistically delivering biomolecules to key cells in the skin and mucosa in the treatment of the major diseases. One of these types of devices, called the Contoured Shock Tube (CST), delivers powdered micro-particles to the skin with a narrow and highly controllable velocity distribution and a nominally uniform spatial distribution. In this paper, we apply a numerical approach to gain new insights in to the behavior of the CST prototype device. The drag correlations proposed by Henderson (1976), Igra and Takayama (1993) and Kurian and Das (1997) were applied to predict the micro-particle transport in a numerically simulated gas flow. Simulated pressure histories agree well with the corresponding static and Pitot pressure measurements, validating the CFD approach. The calculated velocity distributions show a good agreement, with the best prediction from Igra & Takayama correlation (maximum discrepancy of 5%). Key features of the gas dynamics and gas-particle interaction are discussed. Statistic analyses show a tight free-jet particle velocity distribution is achieved (570 +/- 14.7 m/s) for polystyrene particles (39 +/- 1 mu m), representative of a drug payload.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper describes U2DE, a finite-volume code that numerically solves the Euler equations. The code was used to perform multi-dimensional simulations of the gradual opening of a primary diaphragm in a shock tube. From the simulations, the speed of the developing shock wave was recorded and compared with other estimates. The ability of U2DE to compute shock speed was confirmed by comparing numerical results with the analytic solution for an ideal shock tube. For high initial pressure ratios across the diaphragm, previous experiments have shown that the measured shock speed can exceed the shock speed predicted by one-dimensional models. The shock speeds computed with the present multi-dimensional simulation were higher than those estimated by previous one-dimensional models and, thus, were closer to the experimental measurements. This indicates that multi-dimensional flow effects were partly responsible for the relatively high shock speeds measured in the experiments.