982 resultados para Shewhart control chart


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we propose the Double Sampling X̄ control chart for monitoring processes in which the observations follow a first order autoregressive model. We consider sampling intervals that are sufficiently long to meet the rational subgroup concept. The Double Sampling X̄ chart is substantially more efficient than the Shewhart chart and the Variable Sample Size chart. To study the properties of these charts we derived closed-form expressions for the average run length (ARL) taking into account the within-subgroup correlation. Numerical results show that this correlation has a significant impact on the chart properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article, we consider the synthetic control chart with two-stage sampling (SyTS chart) to control the process mean and variance. During the first stage, one item of the sample is inspected; if its value X, is close to the target value of the process mean, then the sampling is interrupted. Otherwise, the sampling goes on to the second stage, where the remaining items are inspected and the statistic T = Sigma [x(i) - mu(0) + xi sigma(0)](2) is computed taking into account all items of the sample. The design parameter is function of X-1. When the statistic T is larger than a specified value, the sample is classified as nonconforming. According to the synthetic procedure, the signal is based on Conforming Run Length (CRL). The CRL is the number of samples taken from the process since the previous nonconforming sample until the occurrence of the next nonconforming sample. If the CRL is sufficiently small, then a signal is generated. A comparative study shows that the SyTS chart and the joint X and S charts with double sampling are very similar in performance. However, from the practical viewpoint, the SyTS chart is more convenient to administer than the joint charts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose - The aim of this paper is to present a synthetic chart based on the non-central chi-square statistic that is operationally simpler and more effective than the joint X̄ and R chart in detecting assignable cause(s). This chart will assist in identifying which (mean or variance) changed due to the occurrence of the assignable causes. Design/methodology/approach - The approach used is based on the non-central chi-square statistic and the steady-state average run length (ARL) of the developed chart is evaluated using a Markov chain model. Findings - The proposed chart always detects process disturbances faster than the joint X̄ and R charts. The developed chart can monitor the process instead of looking at two charts separately. Originality/value - The most important advantage of using the proposed chart is that practitioners can monitor the process by looking at only one chart instead of looking at two charts separately. © Emerald Group Publishing Limted.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Research has shown that applying the T-2 control chart by using a variable parameters (VP) scheme yields rapid detection of out-of-control states. In this paper, the problem of economic statistical design of the VP T-2 control chart is considered as a double-objective minimization problem with the statistical objective being the adjusted average time to signal and the economic objective being expected cost per hour. We then find the Pareto-optimal designs in which the two objectives are met simultaneously by using a multi-objective genetic algorithm. Through an illustrative example, we show that relatively large benefits can be achieved by applying the VP scheme when compared with usual schemes, and in addition, the multi-objective approach provides the user with designs that are flexible and adaptive.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

International audience

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes a procedure to control on-line processes for attributes, using an Shewhart control chart with two control limits (warning limit and control limit) and will be based on a sequence of inspection (h). The inspection procedure is based on Taguchi et al. (1989), in which to inspect the item, if the number of non-conformities is higher than an upper control limit, the process needs to be stopped and some adjustment is required; and, if the last inspection h, from all items inspected present a number of non-conformities between the control limit and warning limit. The items inspected will suffer destructive inspection, being discarded after inspection. Properties of an ergodic Markov chain are used to get the expression of average cost per item and the aim was the determination of four optimized parameters: the sampling interval of the inspections (m); the constant W to draw the warning limit (W); the constant C to draw the control limit (C), where W £ C, and the length of sequence of inspections (h). Numerical examples illustrate the proposed procedure

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The usual practice in using a control chart to monitor a process is to take samples of size n from the process every h hours This article considers the properties of the XBAR chart when the size of each sample depends on what is observed in the preceding sample. The idea is that the sample should be large if the sample point of the preceding sample is close to but not actually outside the control limits and small if the sample point is close to the target. The properties of the variable sample size (VSS) XBAR chart are obtained using Markov chains. The VSS XBAR chart is substantially quicker than the traditional XBAR chart in detecting moderate shifts in the process.