1000 resultados para Shear extrusion


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Química - IQ

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The evolution of crystallographic texture has been comprehensively studied for commercially pure Al as a function of amount of ECAE deformation for the three major routes of ECAE processing. It has been observed that processing through different routes leads to different type of texture, in both qualitative as well as quantitative sense. The results have been analyzed on the basis of existing concepts on ECAE deformation and simulations have been carried out using the simple shear model of ECAE implemented into the Viscoplastic Self Consistent model of polycrystal plasticity. The simulations revealed that non-octahedral slip is needed to reproduce the experimental texture development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The equal-channel angular extrusion (ECAE) of Ti-bearing interstitial-free (IF) steel was performed following two different routes, up to four passes, at a temperature of 300 degrees C. The ECAE led to a grain refinement to submicron size. After the second pass, the grain size attained saturation thereafter. The microstructural analysis indicated the presence of coincident-site lattice (CSL) boundaries in significant fraction, in addition to a high volume fraction of high-angle random boundaries and some low-angle boundaries after the deformation. Among the special boundaries, Sigma 3 and Sigma 13 were the most prominent ones and their fraction depended on the processing route followed. A deviation in the misorientation angle distribution from the Mackenzie distribution was noticed. The crystallographic texture after the first pass resembled that of simple shear, with the {112}, {110}, and {123} aligned to the macroscopic shear plane.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Boron addition to conventional titanium alloys below the eutectic limit refines the cast microstructure and improves mechanical properties. The present work explores the influence of hypoeutectic boron addition on the microstructure and texture evolution in Ti-6Al-4V alloy under beta extrusion. The beta extruded microstructure of Ti-6Al-4V is characterized by shear bands parallel to the extrusion direction. In contrast, the extruded Ti-6Al-4V-0.1B alloy shows a regular beta worked microstructure consisting of fine prior beta grains and acicular alpha-lamellae with no signs of the microstructural instability. Crystallographic texture after extrusion was almost identical for the two alloys indicating the similarity in their transformation behavior, which is attributed to complete dynamic recrystallization during beta processing. Microstructural features as well as crystallographic texture indicate dominant grain boundary related deformation processes for the boron modified alloy that leads to homogeneous deformation without instability formation. The absence of shear bands has significant technological importance as far as the secondary processing of boron added alloys in (alpha + beta)-phase field are concerned. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel engineering thermoplastic, phenolphthalein poly (ether-ether-sulfone) (PES-C) was blended with a commercial thermotropic liquid crystalline polymer(TLCP), Vectra A950, up to 30 weight percent of TLCP. A rheometrics dynamic spectrometer (RDS-I) and a CEAST capillary rheometer, a rheoscope 1000 were employed to investigate the melt rheology and extrusion behaviour at both the low and high shearing rates. The morphologies of the blends under different shearing were observed with a scanning electron microscope(SEM) and correlated to the observed rheology. The principal normal stress differences measured with cone-and-plate geometry give a temperature-independent correlation for both blend and PES-C when they are plotted against shear stress. But the extrudate swell of the blends showed a strong temperature dependence at each shear stress. The concentration dependence of extrudate swell shows a contrary behaviour to that of the inorganic filled system. A reasonable hypothesis based on the relaxation and disorientation of TLCP during flowing in the capillary and exiting was given to explain it. The melt fracture was checked after extrusion from capillary and was discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of hot-melt extrusion (HME) within the pharmaceutical industry is steadily increasing, due to its proven ability to efficiently manufacture novel products. The process has been utilized readily in the plastics industry for over a century and has been used to manufacture medical devices for several decades. The development of novel drugs with poor solubility and bioavailability brought the application of HME into the realm of drug-delivery systems. This has specifically been shown in the development of drug-delivery systems of both solid dosage forms and transdermal patches. HME involves the application of heat, pressure and agitation through an extrusion channel to mix materials together, and subsequently forcing them out through a die. Twin-screw extruders are most popular in solid dosage form development as it imparts both dispersive and distributive mixing. It blends materials while also imparting high shear to break-up particles and disperse them. HME extrusion has been shown to molecularly disperse poorly soluble drugs in a polymer carrier, increasing dissolution rates and bioavailability. The most common difficulty encountered in producing such dispersions is stabilization of amorphous drugs, which prevents them from recrystallization during storage. Pharmaceutical industrial suppliers, of both materials and equipment, have increased their development of equipment and chemicals for specific use with HME. Clearly, HME has been identified as an important and significant process to further enhance drug solubility and solid-dispersion production. © 2012 Future Science Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main aim of the study was to optimise the reactive extrusion conditions in the conventional modification processes of polyethylenes in a single screw extruder.The optimum conditions for peroxide crosslinking of low density polyethylene (LDPE), linear low density polyethylene (LLDPE) and their blend were determined in a torque rheometer. The actual reactive extrusion was performed in a laboratory single screw extruder using the optimum parameters. The influence of the coagent, triaUyl cyanurate (TAC), on the cross linking of low density polyethylene in the presence of peroxide was also investigated. The peroxide crosslinking was found to improve the mechanical properties and the thermal stability of the polyethylenes. The efficiency of crosslinking was found to be improved by the addition of coagent such as TAC.The optimum conditions for silane grafting viz temperature, shear rate, silane and DCP concentrations were determined on a torque rheometer in the case of LDPE, LLDPE and their blend. Silane grafting of LDPE in the presence of peroxide was performed with and without addition of water. Compounding of such mixtures in the melt at high temperatures caused decomposition of the peroxide and grafting of alkoxy silyl groups to the polyethylene chains.The optimum parameters for maleic anhydride modification of LDPE, LLDPE and their blend were determined. The grafting reaction was confinned by FTIR spectroscopy. Modification of polyethylenes with maleic anhydride in the presence of dicumyl peroxide was found to be useful in improving mechanical properties. The improvement was found to be mainly due to the grafting of carboxyl group and formation of crosslinks between the chains. The cross linking initiated improvements indicate extended property profiles and new application fields for polyethylenes.On the whole the study shows that the optimum conditions for modifying polyethylenes can be determined on a torque rheometer and actual modification can be performed in a single screw extruder by employing the optimum parameters for improved mechanical! thermal behaviour without seriously affecting their processing behaviour.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Starve feeding of single screw extruder was described as an important means of improving the performance characteristics of the extruder. In addition to such improvement with versatility, the starve feeding technique also may affect the mechanical properties of the extrudate since the heat transfer an(l mixing characteristics in the starve fed and Hood fed extruders are not the same. Since the material is more loosely packed in the channels of the starve fed extruder, there may be greater bed mobility and uniformity. Further, the. thermal an(l shear induced degradation are also less since possibilities of developing local high temperatures are less compared to a densely compacted extruder bed. This study has been undertaken mainly to explore the effect of feeding rate on the mechanical properties of rubber and plastic extrudates since the effect of feeding rate has not been analysed from this angle so far.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lava dome eruptions are sometimes characterised by large periodic fluctuations in extrusion rate over periods of hours that may be accompanied by Vulcanian explosions and pyroclastic flows. We consider a simple system of nonlinear equations describing a 1D flow of lava extrusion through a deep elastic dyke feeding a shallower cylindrical conduit in order to simulate this short-period cyclicity. Stick-slip conditions depending on a critical shear stress are assumed at the wall boundary of the cylindrical conduit. By analogy with the behaviour of industrial polymers in a plastic extruder, the elastic dyke acts like a barrel and the shallower cylindrical portion of the conduit as a die for the flow of magma acting as a polymer. When we applied the model to the Soufrière Hills Volcano, Montserrat, for which the key parameters have been evaluated from previous studies, cyclic extrusions with periods from 3 to 30 h were readily simulated, matching observations. The model also reproduces the reduced period of cycles observed when a major unloading event occurs due to lava dome collapse.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bovine rumen protein with two levels of residual lipids (1.9% or 3.8%) was subjected to thermoplastic extrusion under different temperatures and moisture contents. Protein Solubility in different buffers, disulphide cross-linking and molecular weight distribution were determined on the extrudates. After extrusion, samples with 1.9% residual lipids content had a higher concentration of protein insoluble by undetermined forces, irrespective of feed moisture and processing temperature used. Lipid content of 3.8% in the feed material resulted in more protein participating in the extrudate network through non-covalent interactions (hydrophobic and electrostatic) and disulphide bonds. A small dependency of the extrusion process on moisture and temperature and a marked dependency on lipid content, especially phospholipid, was observed, Electrophoresis under non-reducing conditions showed that protein extrusion with low feed moisture promoted high molecular breakdown inside the barrel, probably due to intense shear force, and further protein aggregation at the die end. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An investigation of the application of a multi scale CAFE model to prediction of the strain localization phenomena in industrial processes, such as extrusion, is presented in this work. Extrusion involves the formation of a strong strain localization zone, which influences the final product microstructure and may lead to a coarse grain layer close to the surface. Modelling of the shape of this zone and prediction of the strain magnitude will allow computer aided design of the extrusion process and optimisation of the technological parameters with respect to the microstructure and properties of the products. Thus, the particular objective of this work is comparison of the FE and CAFE predictions of strain localization in the shear zone area in extrusion. Advantages and disadvantages of the developed CAFE model are also discussed on the basis of the simulation results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multi scale CAFE model for the prediction of initiation and propagation of the micro shear bands and shear bands in metallic materials subjected to plastic deformation is presented. The CAFE approach is the combination of the Cellular Automata (CA) and the Finite Element (FE) methods. The application of the developed CAFE model to analyze material flow during extrusion is the objective of the present work. The proposed CAFE approach is applied in this work to simulation of the extrusion with flat face and convex dies and to investigate differences in the material flow. The initial FE meshes with the set of the CA point are generated for the numerical tests and the results of the metal flow predicted by the CAFE method are presented in the paper.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A potential severe plastic deformation process known as axi-symmetrical forward spiral extrusion (AFSE) has been studied numerically and experimentally. The process is based on the extrusion of cylindrical samples through a die with engraved spiral grooves in a near zero shape change manner. The process was simulated using a three dimensional finite element (FE) model that has been developed using commercial software, ABAQUS. In order to verify the finite element results, hot rolled and annealed samples of the alloy were experimentally processed by AFSE. The required extrusion forces during the process were estimated using the FE model and compared with the experimental values. The reasonable agreement between the FE results and experimental data verified the accuracy of the FE model. The numerical results indicate the linear strain distribution in the AFSE sample is only valid for a core concentric while the strain distribution in the vicinity of the grooves is non axi-symmetric. The FE simulation results from this research allows a better understanding of AFSE kinematics especially near the grooves, the required extrusion force and the resultant induced strain distribution in the sample. To compare the mechanical properties of the Mg-1.75Mn alloy before and after the process, a micro shear punch test was used. The tests were performed on samples undergoing one and four passes of AFSE. After four passes of AFSE, it was observed that the average shear strength of the alloy has improved by about 21%. The developedfinite element model enables tool design and material flow simulation during the process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A modified axisymmetric forward spiral extrusion (AFSE) has been proposed recently to enhance the strain accumulation during the process. The new technique is called variable lead axisymmetric forward spiral extrusion (VLAFSE) that features a variable lead along the extrusion direction. To assess the effect of design modification on plastic deformation, a comprehensive study has been performed here using a 3D transient finite element (FE) model. The FE results established the shear deformation as the dominant mode of deformation which has been confirmed experimentally. The variable lead die extends strain accumulation in the radial and longitudinal directions over the entire grooved section of the die and eliminates the rigid body rotation which occurs in the case of a constant lead die, AFSE. A comparison of forming loads for VLAFSE and AFSE proved the advantages of the former design in the reduction of the forming load which is more pronounced under higher frictional coefficients. This finding proves that the efficiency of VLAFSE is higher than that of AFSE. Besides, the significant amount of accumulated shear strain in VLAFSE along with non-axisymmetric distribution of friction creates a surface feature in the processed sample called zipper effect that has been investigated. © 2012 Springer Science+Business Media New York.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Axisymmetric forward spiral extrusion (AFSE) accumulates large strains in its sample while extruding it through a die with engraved spiral grooves. A three-dimensional finite element model of AFSE has been developed using ABAQUS to investigate the deformation mode in detail, including the effect of groove geometry and the heterogeneity of plastic deformation. The numerical results demonstrated that the strain distribution in the AFSE sample cross section is linear in the radial direction within a concentric core while the distribution, outside the core, in the vicinity of the grooves is non-linear and non-axisymmetric. Mechanical properties and grain structure changes of the deformed sample were investigated. Improvements of mechanical properties in the processed samples can be attributed to the domination of the shear deformation mode in a plane normal to the extrusion axis and consequently the elongation of grains in the tangential direction