767 resultados para Shear Strain
Resumo:
Crack tip strain maps have been measured for AISI 4340 high strength steel. No significant creep was observed. The measured values of CTOD were greater than expected from the HRR model. Crack tip branching was observed in every experiment. The direction of crack branching was in the same direction as a major ridge'' of epsilon(yy) strain, which in turn was in the same direction as predicted by the HRR model. Furthermore, the measured magnitudes of the epsilon(y)y strain in this same direction were in general greater than the values predicted by the HRR model. This indicates more plasticity in the crack tip region than expected from the HRR model. This greater plasticity could be related to the larger than expected CTOD values. The following discrepancies between the measured strain fields for AISI 4340 and the HRR predictions are noteworthy: (1) The crack branching. (2) Values of CTOD significantly higher than predicted by HRR. (3) The major ridge'' of epsilon(yy) strain an angle of about 60 degrees with the direction of overall propagation of the fatigue precrack, in which the measured magnitudes of the epsilon(yy) strain were greater than the values predicted by the HRR model. (4) Asymmetric shape of the plastic zone as measured by the epsilon(yy) strain. (5) Values of shear strain gamma(xy) significantly higher than predicted by the HRR model. (C) 1999 Kluwer Academic Publishers.
Resumo:
We present a combined shape and mechanical anisotropy evolution model for a two-phase inclusion-bearing rock subject to large deformation. A single elliptical inclusion embedded in a homogeneous but anisotropic matrix is used to represent a simplified shape evolution enforced on all inclusions. The mechanical anisotropy develops due to the alignment of elongated inclusions. The effective anisotropy is quantified using the differential effective medium (DEM) approach. The model can be run for any deformation path and an arbitrary viscosity ratio between the inclusion and host phase. We focus on the case of simple shear and weak inclusions. The shape evolution of the representative inclusion is largely insensitive to the anisotropy development and to parameter variations in the studied range. An initial hardening stage is observed up to a shear strain of gamma = 1 irrespective of the inclusion fraction. The hardening is followed by a softening stage related to the developing anisotropy and its progressive rotation toward the shear direction. The traction needed to maintain a constant shear rate exhibits a fivefold drop at gamma = 5 in the limiting case of an inviscid inclusion. Numerical simulations show that our analytical model provides a good approximation to the actual evolution of a two-phase inclusion-host composite. However, the inclusions develop complex sigmoidal shapes resulting in the formation of an S-C fabric. We attribute the observed drop in the effective normal viscosity to this structural development. We study the localization potential in a rock column bearing varying fraction of inclusions. In the inviscid inclusion case, a strain jump from gamma = 3 to gamma = 100 is observed for a change of the inclusion fraction from 20% to 33%.
Resumo:
Analogue model experiments using both brittle and viscous materials were performed to investigate the development and interaction of strike-slip faults in zones of distributed shear deformation. At low strain, bulk dextral shear deformation of an initial rectangular model is dominantly accommodated by left-stepping, en echelon strike-slip faults (Riedel shears, R) that form in response to the regional (bulk) stress field. Push-up zones form in the area of interaction between adjacent left-stepping Riedel shears. In cross sections, faults bounding push-up zones have an arcuate shape or merge at depth. Adjacent left-stepping R shears merge by sideways propagation or link by short synthetic shears that strike subparallel to the bulk shear direction. Coalescence of en echelon R shears results in major, through-going faults zones (master faults). Several parallel master faults develop due to the distributed nature of deformation. Spacing between master faults is related to the thickness of the brittle layers overlying the basal viscous layer. Master faults control to a large extent the subsequent fault pattern. With increasing strain, relatively short antithetic and synthetic faults develop mostly between old, but still active master faults. The orientation and evolution of the new faults indicate local modifications of the stress field. In experiments lacking lateral borders, closely spaced parallel antithetic faults (cross faults) define blocks that undergo clockwise rotation about a vertical axis with continuing deformation. Fault development and fault interaction at different stages of shear strain in our models show similarities with natural examples that have undergone distributed shear.
Resumo:
In biaxial compression tests, the stress calculations based on boundary information underestimate the principal stresses leading to a significant overestimation of the shear strength. In direct shear tests, the shear strain becomes highly concentrated in the mid-plane of the sample during the test. Although the stress distribution within the specimen is heterogeneous, the evolution of the stress ratio inside the shear band is similar to that inferred from the boundary force calculations. It is also demonstrated that the dilatancy in the shear band significantly exceeds that implied from the boundary displacements. In simple shear tests, the stresses acting on the wall boundaries do not reflect the internal state of stress but merely provide information about the average mobilised wall friction. It is demonstrated that the results are sensitive to the initial stress state defined by K0 = sh/sv. For all cases, non-coaxiality of the principal stress and strain-rate directions is examined and the corresponding flow rule is identified. Periodic cell simulations have been used to examine biaxial compression for a wide range of initial packing densities. Both constant volume and constant mean stress tests have been simulated. The characteristic behaviour at both the macroscopic and microscopic scales is determined by whether or not the system percolates (enduring connectivity is established in all directions). The transition from non-percolating to percolating systems is characterised by transitional behaviour of internal variables and corresponds to an elastic percolation threshold, which correlates well with the establishment of a mechanical coordination number of ca. 3.0. Strong correlations are found between macroscopic and internal variables at the critical state.
Resumo:
Thesis (Master's)--University of Washington, 2016-08
Resumo:
In this work, the stress relaxation behavior of PMMA/PS blends, with or without random copolymer addition, submitted to step shear strain experiments in the linear and nonlinear regime was studied. The effect of blend composition (ranging from 10 to 30 wt.% of dispersed phase), viscosity ratio (ranging from 0.1 to 7.5), and random copolymer addition (for concentrations up to 8 wt.% with respect to the dispersed phase) was evaluated and correlated to the evolution of the morphology of the blends. All blends presented three relaxation stages: a first fast relaxation which was attributed to the relaxation of the pure phases, a second one which was characterized by the presence of a plateau, and a third fast one. The relaxation was shown to be faster for less extended and smaller droplets and to be influenced by coalescence for blends with a dispersed phase concentration larger than 20 wt.%. The relaxation of the blend was strongly influenced by the matrix viscosity. The addition of random copolymer resulted in a slower relaxation of the droplets.
Resumo:
Variable aspect ratio porphyroblasts deformed in non-coaxial flow. and internally containing rotated relicts of an external foliation, can be used to characterise plane strain flow regimes. The distribution obtained by plotting the orientation of the long axis of such grains, classified by aspect ratio, against the orientation of the internal foliation is potentially a sensitive gauge of both the bulk shear strain (as previously suggested) and kinematic vorticity number. We illustrate the method using rotated biotite porphyroblasts in the Alpine Schist: a sequence of mid-crustal rocks that have been ramped to the surface along the Alpine Fault. a major transpressional plate boundary. Results indicate that, at distances greater than or equal to similar to1 km from the fault, the rocks have undergone a combination of irrotational fattening and dextral-oblique, normal-sense shear, with a bulk shear strain of similar to0.6 and kinematic vorticity number of similar to0.2. The vorticity analysis is compatible with estimates of strongly oblate bulk strain of similar to 75% maximum shortening. Dextral-reverse transpressional flow characterises higher strain S-tectonite mylonite within similar to1 km of the Alpine Fault. These relationships provide insight into the kinematics of flow and distribution of strain in the hangingwall of the Alpine Fault and place constraints on numerical mechanical models for the exhumation of these mid-crustal rocks. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
This paper presents a large amplitude vibration analysis of pre-stressed functionally graded material (FGM) laminated plates that are composed of a shear deformable functionally graded layer and two surface-mounted piezoelectric actuator layers. Nonlinear governing equations of motion are derived within the context of Reddy's higher-order shear deformation plate theory to account for transverse shear strain and rotary inertia. Due to the bending and stretching coupling effect, a nonlinear static problem is solved first to determine the initial stress state and pre-vibration deformations of the plate that is subjected to uniform temperature change, in-plane forces and applied actuator voltage. By adding an incremental dynamic state to the pre-vibration state, the differential equations that govern the nonlinear vibration behavior of pre-stressed FGM laminated plates are derived. A semi-analytical method that is based on one-dimensional differential quadrature and Galerkin technique is proposed to predict the large amplitude vibration behavior of the laminated rectangular plates with two opposite clamped edges. Linear vibration frequencies and nonlinear normalized frequencies are presented in both tabular and graphical forms, showing that the normalized frequency of the FGM laminated plate is very sensitive to vibration amplitude, out-of-plane boundary support, temperature change, in-plane compression and the side-to-thickness ratio. The CSCF and CFCF plates even change the inherent hard-spring characteristic to soft-spring behavior at large vibration amplitudes. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
One of the most effective ways of controlling vibrations in plate or beam structures is by means of constrained viscoelastic damping treatments. Contrary to the unconstrained configuration, the design of constrained and integrated layer damping treatments is multifaceted because the thickness of the viscoelastic layer acts distinctly on the two main counterparts of the strain energy the volume of viscoelastic material and the shear strain field. In this work, a parametric study is performed exploring the effect that the design parameters, namely the thickness/length ratio, constraining layer thickness, material modulus, natural mode and boundary conditions have on these two counterparts and subsequently, on the treatment efficiency. This paper presents five parametric studies, namely, the thickness/length ratio, the constraining layer thickness, material properties, natural mode and boundary conditions. The results obtained evidence an interesting effect when dealing with very thin viscoelastic layers that contradicts the standard treatment efficiency vs. layer thickness relation; hence, the potential optimisation of constrained and integrated viscoelastic treatments through the use of properly designed thin multilayer configurations is justified. This work presents a dimensionless analysis and provides useful general guidelines for the efficient design of constrained and integrated damping treatments based on single or multi-layer configurations. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Ao longo destes últimos anos as ligações adesivas têm vindo a verificar um aumento progressivo em aplicações estruturais em detrimento das ligações mecânicas convencionais. Esta alteração de paradigma deve-se às vantagens que as juntas adesivas possuem relativamente aos outros métodos de ligação. A mecânica da fratura e os Modelos de Dano Coesivo (MDC) são critérios comuns para prever a resistência em juntas adesivas e usam como parâmetros fundamentais as taxas de libertação de energia. Pelo facto do ensaio 4-Point End Notched Flexure (4-ENF), aplicado em juntas adesivas, ainda estar pouco estudado é de grande relevância um estudo acerca da sua viabilidade para a determinação da taxa crítica de libertação de energia de deformação ao corte (GIIc). Esta dissertação tem como objetivo principal efetuar uma comparação entre os métodos End- Notched Flexure (ENF) e 4-ENF na determinação de GIIc em juntas adesivas. Para tal foram utilizados 3 adesivos: Araldite® AV138, Araldite® 2015 e SikaForce® 7752. O trabalho experimental passou pela conceção e fabrico de uma ferramenta para realização do ensaio 4-ENF, seguindo-se o fabrico e a preparação dos provetes para os ensaios. Pelo facto do ensaio 4-ENF ainda se encontrar pouco divulgado em juntas adesivas, e não se encontrar normalizado, uma parte importante do trabalho passou pela pesquisa e análise em trabalhos de investigação e artigos científicos. A análise dos resultados foi realizada por comparação direta dos valores de GIIc com os resultados obtidos no ensaio ENF, sendo realizada por série de adesivo, através da comparação das curvas P-δ e curvas-R. Como resultado verificou-se que o ensaio 4-ENF em ligações adesivas não é o mais versátil para a determinação do valor de GIIc, e que apenas um método de obtenção de GIIc é viável. Este método é baseado na medição do comprimento de fenda (a). Ficou evidenciado que o ensaio ENF, devido a ser um ensaio normalizado, por apresentar um setup mais simples e por apresentar uma maior disponibilidade de métodos para a determinação do valor de GIIc, é o mais recomendado. Conclui-se assim que o ensaio 4-ENF, embora sendo uma alternativa ao ensaio ENF, tem aplicação mais limitada.
Resumo:
This work proposes a constitutive model to simulate nonlinear behaviour of cement based materials subjected to different loading paths. The model incorporates a multidirectional fixed smeared crack approach to simulate crack initiation and propagation, whereas the inelastic behaviour of material between cracks is treated by a numerical strategy that combines plasticity and damage theories. For capturing more realistically the shear stress transfer between the crack surfaces, a softening diagram is assumed for modelling the crack shear stress versus crack shear strain. The plastic damage model is based on the yield function, flow rule and evolution law for hardening variable, and includes an explicit isotropic damage law to simulate the stiffness degradation and the softening behaviour of cement based materials in compression. This model was implemented into the FEMIX computer program, and experimental tests at material scale were simulated to appraise the predictive performance of this constitutive model. The applicability of the model for simulating the behaviour of reinforced concrete shear wall panels submitted to biaxial loading conditions, and RC beams failing in shear is investigated.
Resumo:
Many three-dimensional (3-D) structures in rock, which formed during the deformation of the Earth's crust and lithosphere, are controlled by a difference in mechanical strength between rock units and are often the result of a geometrical instability. Such structures are, for example, folds, pinch-and-swell structures (due to necking) or cuspate-lobate structures (mullions). These struc-tures occur from the centimeter to the kilometer scale and the related deformation processes con-trol the formation of, for example, fold-and-thrust belts and extensional sedimentary basins or the deformation of the basement-cover interface. The 2-D deformation processes causing these structures are relatively well studied, however, several processes during large-strain 3-D defor-mation are still incompletely understood. One of these 3-D processes is the lateral propagation of these structures, such as fold and cusp propagation in a direction orthogonal to the shortening direction or neck propagation in direction orthogonal to the extension direction. Especially, we are interested in fold nappes which are recumbent folds with amplitudes usually exceeding 10 km and they have been presumably formed by ductile shearing. They often exhibit a constant sense of shearing and a non-linear increase of shear strain towards their overturned limb. The fold axes of the Morcles fold nappe in western Switzerland plunges to the ENE whereas the fold axes in the more eastern Doldenhorn nappe plunges to the WSW. These opposite plunge direc-tions characterize the Rawil depression (Wildstrubel depression). The Morcles nappe is mainly the result of layer parallel contraction and shearing. During the compression the massive lime-stones were more competent than the surrounding marls and shales, which led to the buckling characteristics of the Morcles nappe, especially in the north-dipping normal limb. The Dolden-horn nappe exhibits only a minor overturned fold limb. There are still no 3-D numerical studies which investigate the fundamental dynamics of the formation of the large-scale 3-D structure including the Morcles and Doldenhorn nappes and the related Rawil depression. We study the 3-D evolution of geometrical instabilities and fold nappe formation with numerical simulations based on the finite element method (FEM). Simulating geometrical instabilities caused by sharp variations of mechanical strength between rock units requires a numerical algorithm that can accurately resolve material interfaces for large differences in material properties (e.g. between limestone and shale) and for large deformations. Therefore, our FE algorithm combines a nu-merical contour-line technique and a deformable Lagrangian mesh with re-meshing. With this combined method it is possible to accurately follow the initial material contours with the FE mesh and to accurately resolve the geometrical instabilities. The algorithm can simulate 3-D de-formation for a visco-elastic rheology. The viscous rheology is described by a power-law flow law. The code is used to study the 3-D fold nappe formation, the lateral propagation of folding and also the lateral propagation of cusps due to initial half graben geometry. Thereby, the small initial geometrical perturbations for folding and necking are exactly followed by the FE mesh, whereas the initial large perturbation describing a half graben is defined by a contour line inter-secting the finite elements. Further, the 3-D algorithm is applied to 3-D viscous nacking during slab detachment. The results from various simulations are compared with 2-D resulats and a 1-D analytical solution. -- On retrouve beaucoup de structures en 3 dimensions (3-D) dans les roches qui ont pour origines une déformation de la lithosphère terrestre. Ces structures sont par exemple des plis, des boudins (pinch-and-swell) ou des mullions (cuspate-lobate) et sont présentés de l'échelle centimétrique à kilométrique. Mécaniquement, ces structures peuvent être expliquées par une différence de résistance entre les différentes unités de roches et sont généralement le fruit d'une instabilité géométrique. Ces différences mécaniques entre les unités contrôlent non seulement les types de structures rencontrées, mais également le type de déformation (thick skin, thin skin) et le style tectonique (bassin d'avant pays, chaîne d'avant pays). Les processus de la déformation en deux dimensions (2-D) formant ces structures sont relativement bien compris. Cependant, lorsque l'on ajoute la troisiéme dimension, plusieurs processus ne sont pas complètement compris lors de la déformation à large échelle. L'un de ces processus est la propagation latérale des structures, par exemple la propagation de plis ou de mullions dans la direction perpendiculaire à l'axe de com-pression, ou la propagation des zones d'amincissement des boudins perpendiculairement à la direction d'extension. Nous sommes particulièrement intéressés les nappes de plis qui sont des nappes de charriage en forme de plis couché d'une amplitude plurikilométrique et étant formées par cisaillement ductile. La plupart du temps, elles exposent un sens de cisaillement constant et une augmentation non linéaire de la déformation vers la base du flanc inverse. Un exemple connu de nappes de plis est le domaine Helvétique dans les Alpes de l'ouest. Une de ces nap-pes est la Nappe de Morcles dont l'axe de pli plonge E-NE tandis que de l'autre côté de la dépression du Rawil (ou dépression du Wildstrubel), la nappe du Doldenhorn (équivalent de la nappe de Morcles) possède un axe de pli plongeant O-SO. La forme particulière de ces nappes est due à l'alternance de couches calcaires mécaniquement résistantes et de couches mécanique-ment faibles constituées de schistes et de marnes. Ces différences mécaniques dans les couches permettent d'expliquer les plissements internes à la nappe, particulièrement dans le flanc inver-se de la nappe de Morcles. Il faut également noter que le développement du flanc inverse des nappes n'est pas le même des deux côtés de la dépression de Rawil. Ainsi la nappe de Morcles possède un important flanc inverse alors que la nappe du Doldenhorn en est presque dépour-vue. A l'heure actuelle, aucune étude numérique en 3-D n'a été menée afin de comprendre la dynamique fondamentale de la formation des nappes de Morcles et du Doldenhorn ainsi que la formation de la dépression de Rawil. Ce travail propose la première analyse de l'évolution 3-D des instabilités géométriques et de la formation des nappes de plis en utilisant des simulations numériques. Notre modèle est basé sur la méthode des éléments finis (FEM) qui permet de ré-soudre avec précision les interfaces entre deux matériaux ayant des propriétés mécaniques très différentes (par exemple entre les couches calcaires et les couches marneuses). De plus nous utilisons un maillage lagrangien déformable avec une fonction de re-meshing (production d'un nouveau maillage). Grâce à cette méthode combinée il nous est possible de suivre avec précisi-on les interfaces matérielles et de résoudre avec précision les instabilités géométriques lors de la déformation de matériaux visco-élastiques décrit par une rhéologie non linéaire (n>1). Nous uti-lisons cet algorithme afin de comprendre la formation des nappes de plis, la propagation latérale du plissement ainsi que la propagation latérale des structures de type mullions causé par une va-riation latérale de la géométrie (p.ex graben). De plus l'algorithme est utilisé pour comprendre la dynamique 3-D de l'amincissement visqueux et de la rupture de la plaque descendante en zone de subduction. Les résultats obtenus sont comparés à des modèles 2-D et à la solution analytique 1-D. -- Viele drei dimensionale (3-D) Strukturen, die in Gesteinen vorkommen und durch die Verfor-mung der Erdkruste und Litosphäre entstanden sind werden von den unterschiedlichen mechani-schen Eigenschaften der Gesteinseinheiten kontrolliert und sind häufig das Resulat von geome-trischen Istabilitäten. Zu diesen strukturen zählen zum Beispiel Falten, Pich-and-swell Struktu-ren oder sogenannte Cusbate-Lobate Strukturen (auch Mullions). Diese Strukturen kommen in verschiedenen Grössenordungen vor und können Masse von einigen Zentimeter bis zu einigen Kilometer aufweisen. Die mit der Entstehung dieser Strukturen verbundenen Prozesse kontrol-lieren die Entstehung von Gerbirgen und Sediment-Becken sowie die Verformung des Kontaktes zwischen Grundgebirge und Stedimenten. Die zwei dimensionalen (2-D) Verformungs-Prozesse die zu den genannten Strukturen führen sind bereits sehr gut untersucht. Einige Prozesse wäh-rend starker 3-D Verformung sind hingegen noch unvollständig verstanden. Einer dieser 3-D Prozesse ist die seitliche Fortpflanzung der beschriebenen Strukturen, so wie die seitliche Fort-pflanzung von Falten und Cusbate-Lobate Strukturen senkrecht zur Verkürzungsrichtung und die seitliche Fortpflanzung von Pinch-and-Swell Strukturen othogonal zur Streckungsrichtung. Insbesondere interessieren wir uns für Faltendecken, liegende Falten mit Amplituden von mehr als 10 km. Faltendecken entstehen vermutlich durch duktile Verscherung. Sie zeigen oft einen konstanten Scherungssinn und eine nicht-lineare zunahme der Scherverformung am überkipp-ten Schenkel. Die Faltenachsen der Morcles Decke in der Westschweiz fallen Richtung ONO während die Faltenachsen der östicher gelegenen Doldenhorn Decke gegen WSW einfallen. Diese entgegengesetzten Einfallrichtungen charakterisieren die Rawil Depression (Wildstrubel Depression). Die Morcles Decke ist überwiegend das Resultat von Verkürzung und Scherung parallel zu den Sedimentlagen. Während der Verkürzung verhielt sich der massive Kalkstein kompetenter als der Umliegende Mergel und Schiefer, was zur Verfaltetung Morcles Decke führ-te, vorallem in gegen Norden eifallenden überkippten Schenkel. Die Doldenhorn Decke weist dagegen einen viel kleineren überkippten Schenkel und eine stärkere Lokalisierung der Verfor-mung auf. Bis heute gibt es keine 3-D numerischen Studien, die die fundamentale Dynamik der Entstehung von grossen stark verformten 3-D Strukturen wie den Morcles und Doldenhorn Decken sowie der damit verbudenen Rawil Depression untersuchen. Wir betrachten die 3-D Ent-wicklung von geometrischen Instabilitäten sowie die Entstehung fon Faltendecken mit Hilfe von numerischen Simulationen basiert auf der Finite Elemente Methode (FEM). Die Simulation von geometrischen Instabilitäten, die aufgrund von Änderungen der Materialeigenschaften zwischen verschiedenen Gesteinseinheiten entstehen, erfortert einen numerischen Algorithmus, der in der Lage ist die Materialgrenzen mit starkem Kontrast der Materialeigenschaften (zum Beispiel zwi-schen Kalksteineinheiten und Mergel) für starke Verfomung genau aufzulösen. Um dem gerecht zu werden kombiniert unser FE Algorithmus eine numerische Contour-Linien-Technik und ein deformierbares Lagranges Netz mit Re-meshing. Mit dieser kombinierten Methode ist es mög-lich den anfänglichen Materialgrenzen mit dem FE Netz genau zu folgen und die geometrischen Instabilitäten genügend aufzulösen. Der Algorithmus ist in der Lage visko-elastische 3-D Ver-formung zu rechnen, wobei die viskose Rheologie mit Hilfe eines power-law Fliessgesetzes beschrieben wird. Mit dem numerischen Algorithmus untersuchen wir die Entstehung von 3-D Faltendecken, die seitliche Fortpflanzung der Faltung sowie der Cusbate-Lobate Strukturen die sich durch die Verkürzung eines mit Sediment gefüllten Halbgraben bilden. Dabei werden die anfänglichen geometrischen Instabilitäten der Faltung exakt mit dem FE Netz aufgelöst wäh-rend die Materialgranzen des Halbgrabens die Finiten Elemente durchschneidet. Desweiteren wird der 3-D Algorithmus auf die Einschnürung während der 3-D viskosen Plattenablösung und Subduktion angewandt. Die 3-D Resultate werden mit 2-D Ergebnissen und einer 1-D analyti-schen Lösung verglichen.
Resumo:
A three dimensional nonlinear viscoelastic constitutive model for the solid propellant is developed. In their earlier work, the authors have developed an isotropic constitutive model and verified it for one dimensional case. In the present work, the validity of the model is extended to three-dimensional cases. Large deformation, dewetting and cyclic loading effects are treated as the main sources of nonlinear behavior of the solid propellant. Viscoelastic dewetting criteria is used and the softening of the solid propellant due to dewetting is treated by the modulus decrease. The nonlinearities during cyclic loading are accounted for by the functions of the octahedral shear strain measure. The constitutive equation is implemented into a finite element code for the analysis of propellant grains. A commercial finite element package ABAQUS is used for the analysis and the model is introduced into the code through a user subroutine. The model is evaluated with different loading conditions and the predicted values are in good agreement with the measured ones. The resulting model applied to analyze a solid propellant grain for the thermal cycling load.
Resumo:
This study compared splinted and non-splinted implant-supported prosthesis with and without a distal proximal contact using a digital image correlation method. An epoxy resin model was made with acrylic resin replicas of a mandibular first premolar and second molar and with threaded implants replacing the second premolar and first molar. Splinted and non-splinted metal-ceramic screw-retained crowns were fabricated and loaded with and without the presence of the second molar. A single-camera measuring system was used to record the in-plane deformation on the model surface at a frequency of 1.0 Hz under a load from 0 to 250 N. The images were then analyzed with specialist software to determine the direct (horizontal) and shear strains along the model. Not splinting the crowns resulted in higher stress transfer to the supporting implants when the second molar replica was absent. The presence of a second molar and an effective interproximal contact contributed to lower stress transfer to the supporting structures even for non-splinted restorations. Shear strains were higher in the region between the molars when the second molar was absent, regardless of splinting. The opposite was found for the region between the implants, which had higher shear strain values when the second molar was present. When an effective distal contact is absent, non-splinted implant-supported restorations introduce higher direct strains to the supporting structures under loading. Shear strains appear to be dependent also on the region within the model, with different regions showing different trends in strain changes in the absence of an effective distal contact. (C) 2011 Elsevier Ltd. All rights reserved.