947 resultados para Shallow aquifer
Resumo:
A study of environmental chloride and groundwater balance has been carried out in order to estimate their relative value for measuring average groundwater recharge under a humid climatic environment with a relatively shallow water table. The hybrid water fluctuation method allowed the split of the hydrologic year into two seasons of recharge (wet season) and no recharge (dry season) to appraise specific yield during the dry season and, second, to estimate recharge from the water table rise during the wet season. This well elaborated and suitable method has then been used as a standard to assess the effectiveness of the chloride method under forest humid climatic environment. Effective specific yield of 0.08 was obtained for the study area. It reflects an effective basin-wide process and is insensitive to local heterogeneities in the aquifer system. The hybrid water fluctuation method gives an average recharge value of 87.14 mm/year at the basin scale, which represents 5.7% of the annual rainfall. Recharge value estimated based on the chloride method varies between 16.24 and 236.95 mm/year with an average value of 108.45 mm/year. It represents 7% of the mean annual precipitation. The discrepancy observed between recharge value estimated by the hybrid water fluctuation and the chloride mass balance methods appears to be very important, which could imply the ineffectiveness of the chloride mass balance method for this present humid environment.
Resumo:
Detailed monitoring of the groundwater table can provide important data about both short- and long-term aquifer processes, including information useful for estimating recharge and facilitating groundwater modeling and remediation efforts. In this paper, we presents results of 4 years (2002 to 2005) of monitoring groundwater water levels in the Rio Claro Aquifer using observation wells drilled at the Rio Claro campus of São Paulo State University in Brazil. The data were used to follow natural periodic fluctuations in the water table, specifically those resulting from earth tides and seasonal recharge cycles. Statistical analyses included methods of time-series analysis using Fourier analysis, cross-correlation, and R/S analysis. Relationships could be established between rainfall and well recovery, as well as the persistence and degree of autocorrelation of the water table variations. We further used numerical solutions of the Richards equation to obtain estimates of the recharge rate and seasonable groundwater fluctuations. Seasonable soil moisture transit times through the vadose zone obtained with the numerical solution were very close to those obtained with the cross-correlation analysis. We also employed a little-used deep drainage boundary condition to obtain estimates of seasonable water table fluctuations, which were found to be consistent with observed transient groundwater levels during the period of study.
Resumo:
Unstable density-driven flow can lead to enhanced solute transport in groundwater. Only recently has the complex fingering pattern associated with free convection been documented in field settings. Electrical resistivity (ER) tomography has been used to capture a snapshot of convective instabilities at a single point in time, but a thorough transient analysis is still lacking in the literature. We present the results of a 2 year experimental study at a shallow aquifer in the United Arab Emirates that was designed to specifically explore the transient nature of free convection. ER tomography data documented the presence of convective fingers following a significant rainfall event. We demonstrate that the complex fingering pattern had completely disappeared a year after the rainfall event. The observation is supported by an analysis of the aquifer halite budget and hydrodynamic modeling of the transient character of the fingering instabilities. Modeling results show that the transient dynamics of the gravitational instabilities (their initial development, infiltration into the underlying lower-density groundwater, and subsequent decay) are in agreement with the timing observed in the time-lapse ER measurements. All experimental observations and modeling results are consistent with the hypothesis that a dense brine that infiltrated into the aquifer from a surficial source was the cause of free convection at this site, and that the finite nature of the dense brine source and dispersive mixing led to the decay of instabilities with time. This study highlights the importance of the transience of free convection phenomena and suggests that these processes are more rapid than was previously understood.
Resumo:
Observations of horizontal and vertical variations in piezometric head in a homogeneous, laboratory aquifer are presented and discussed. The observed fluctuations are induced by a simple harmonic oscillation in the clear water reservoir acting across a sloping boundary. The data qualitatively supports existing theories in that higher harmonics are generated in the active forcing zone and that a significant increase in the inland, asymptotic watertable over height (relative to that found for the vertical boundary case) is observed. The observed overheight is shown to be accurately reproduced by existing small-amplitude perturbation theory. Detailed measurements in the vicinity of the sloping boundary reveal that the signal of generated higher harmonics is strongest near the sand surface and that vertical flows are significant in this region. The aquifer is of finite-depth and is influenced by capillary effects, the experimental data therefore exposes limitations of theories which are based on the assumption of a shallow aquifer free of capillary effects. The dispersive properties of the measured pressure wave in the aquifer are comparable to those found from field observations and likewise do not agree with those predicted by the capillary free, shallow aquifer theory. Although some improvement is obtained, discrepancies between the data and theory persist even when a finite-depth aquifer and capillary effects are considered in the theoretical model. Further sand column experiments eliminate a truncated capillary fringe as a possible contributor to these discrepancies. However, the neglect of horizontal flows in the fringe may have caused the discrepancies. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The scope of the investigation involved the drilling of test holes and the detailed inventorying of existing wells in order to define the location, depth, potential yield, and chemical quality of the water contained in the shallow aquifer that might be used for the development of a central water-supply system. The field work and collection of data for the investigation covered the period 1961 through 1963. Much of the data collected for the report on the ground-water resources of Collier County (McCoy, 1962) is incorporated into this report. (Document has 36 pages.)
Resumo:
The Biscayne Aquifer is the principal source of water for the heavily populated area in the vicinity of West Palm Beach and Miami. The publication of this data is timely and will assist in the intelligent development of the water resources of the area.The report recognizes two major aquifers as the source of ground water in Collier County. The lower aquifer is highly mineralized, but contains usable water, and the more shallow aquifer is the source of large supplies, which are utilized by municipalities and domestic users. Adequate supplies of fresh water are present in the Naples area and by proper planning, these can be developed in an orderly manner and salt water encroachment can be prevented. (PDF has 99 pages)
Resumo:
Volatile organic compound (VOC) contamination of subsurface geological material and groundwater was discovered on the Nortel Monkstown industrial site, Belfast, Northern Ireland. The objectives of this study were to (1) investigate the characteristics of the geological material and its influences on contaminated groundwater flow across the site using borehole logs and hydrological evaluations, and (2) identify the contaminants and examine their distribution in the subsurface geological material and groundwater using chemical analysis. This report focuses on the eastern car park (ECP) which was a former storage area associated with trichloroethene (TCE) degreasing operations. This is where the greatest amount of volatile organic compounds (VOCs), particularly TCE, were detected. The study site is on a complex deposit of clayey glacial till with discontinuous coarser grained lenses, mainly silts, sands and gravel, which occur at 0.45–7.82 m below ground level (bgl). The lenses overall form an elongated formation that acts as a small unconfined shallow aquifer. There is a continuous low permeable stiff clayey till layer beneath the lenses that performs as an aquitard to the groundwater. Highest concentrations of VOCs, mainly TCE, in the geological material and groundwater are in these coarser lenses at ~4.5–7 m bgl. Highest TCE measurements at 390,000 µg L-1 for groundwater and at 39,000 µg kg-1 at 5.7 m for geological material were in borehole GA19 in the coarse lens zone. It is assumed that TCE gained entrance to the subsurface near this borehole where the clayey till was thin to absent above coarse lenses which provided little retardation to the vertical migration of this dense non-aqueous phase liquid (DNAPL) into the groundwater. However, TCE is present in low concentrations in the geological material overlying the coarse lens zone. Additionally, VOCs appear to be associated with poorly drained layers and in peat
Resumo:
A site investigation program was carried out to detect salt-water intrusions in a shallow sedimentary aquifer based on electrical resistivity measurements. The site is located close to Paranaguá harbor, in the Paraná State, Brasil. At this site, high chloride concentration contaminated shallow water wells used to supply water for local industries. The site investigation program included a fieldwork, dipole-dipole electrical profiling, resistivity piezocone tests, physical-chemical analysis of sampled water and interpretation of borehole logs. The resistivity piezocone tests provided two simultaneous information; the soil stratigraphy at a very detailed level and a quasi-continuous resistivity profile. Both information adequately complemented dipole-dipole electrical profiling test data. The integration of all test data allowed identifying the contaminated areas as well as guided the location of new water wells to be installed in this area.
Resumo:
Nos últimos dez anos foram realizadas na parte leste da Ilha de Marajó (região dos campos naturais) pelo IDESP e NCGG, mais de 800 SEVs para fins hidrogeológicos. Na época, grande parte dessas SEVs não foram totalmente interpretadas em forma quantitativa, devido à falta de recursos técnicos para fazê-lo de forma eficiente. Agora, usando meios mais modernos para interpretação automática de SEVs, voltou-se a interpretá-las com a finalidade de apresentar uma visão regional dos principais aquíferos da área, agrupar as SEVs em famílias características, testar até que ponto essa interpretação é confiável e propor o modelamento bidimensional como técnica alternativa para interpretar as SEVs realizadas em certos locais da área em questão. Como resultado dessa interpretação, com base na teoria convencional dos meios estratificados, foram definidos três tipos de sistemas de aquíferos. 1. O primeiro, denominado de aquífero profundo, situado a profundidades maiores que 50m, estende-se por toda a região prospectada, estando provavelmente associada às camadas superiores da Formação Marajó ou às litologias altamente resistivas das camadas mais profundas do Grupo Pará. 2. O segundo, denominado de aquífero raso e de média profundidade, localiza-se na parte sul e sudeste da região a profundidades compreendidas entre 10 a 50m, e está associado às lentes arenosas do Grupo Pará. 3. O terceiro, é constituído pelos paleocanais e estruturas similares, distribuídos aleatoriamente na região a pouca profundidade. A partir do estudo detalhado das SEVs, decidiu-se classificá-las em 3 famílias características com seus respectivos tipos e apresentar mapas de localização e da espessura dos aquíferos, bem como mapas de condutância longitudinal total e resistividade média da área. Estes últimos, permitem que se divida a região dos campos da Ilha de Marajó em três zonas principais: 1. Uma, altamente resistiva, situada ao sul e sudeste, a qual coincide com os terrenos aflorantes do Grupo Pará. 2. Outra, altamente condutiva, está localizada no centro e norte, onde se encontram aleatoriamente distribuídos os paleocanais e coincide com os terrenos topograficamente mais baixos, geralmente argilosos e embebidos de água salgada, que são procedentes da erosão dos terrenos circundantes topograficamente mais altos. 3. A última é medianamente resistiva e está relacionada com os terrenos vizinhos à cidade de Chaves (noroeste da região dos campos), os quais apresentam semelhanças com os do sul e sudeste da área. Usando-se a técnica de inversão na interpretação de uma SEV característica de cada família, testou-se, através do seu tratamento estatístico, até que ponto os modelos usados na interpretação dessas SEVs (teoria convencional dos meios estratificados) seriam confiáveis. Conclui-se, então, que a alta correlação existente entre os parâmetros dos modelos assumidos (camadas horizontais, isotrópicas e homogêneas) pode-se dever à utilização de modelos geofísicos muito simples para interpretar a complexa geologia de Marajó. Tendo-se verificado que nem sempre é possível aplicar a teoria das SEVs em meios horizontalmente estratificados para interpretar SEVs obtidas em certos locais de Marajó, os quais muitas vezes apresentam bruscas variações laterais de resistividade, passou-se a demonstrar que estas variações laterais afetam profundamente os dados das SEVs, utilizando-se para isto a técnica dos elementos finitos, a qual leva em conta essa variação bidimensional das propriedades físicas do meio. Foi também possível com esta técnica, modelar uma estrutura rasa, semelhante a um paleocanal, concluindo-se que estes resultados sugerem o emprego, duma forma mais profunda, deste tipo de tratamento para os dados obtidos na região dos campos da Ilha de Marajó.
Resumo:
Constatou-se um aquífero pouco profundo, substancial para o desenvolvimento da região em estudo: sistema aquífero Ponta de Pedras. Esse aquífero é livre em alguns locais e semi-confinado em sua maior parte. Sua profundidade de topo máxima encontrada foi de 14,0 m, porém, em várias sondagens no ocidente da área e na sondagem em Igarapé Vilar, seu topo não foi atingido, podendo estar a mais de 16,0 m de profundidade. As profundidades de sua base e as espessuras desse aquífero são maiores que 34,0 m e 17,0 m, respectivamente, na sondagem de Mangabeira. Sua alimentação é feita principalmente por águas meteóricas. Taxas de infiltração entre 106 a 107 m3 por dia em 1 Km2, foram estimadas para o mês de fevereiro de 1977. Suas porosidades efetivas, estimadas entre 25% e 37%, permitiu calcular um volume de água subterrânea próximo de 250x106m3. O coeficiente de Darcy (K) médio é de aproximadamente 200 litros por dia por centímetro quadrado do sistema aquífero. As águas subterrâneas estudadas têm as seguintes características físico-químicas: pH sempre ácido entre 2,4 e 6,7; condutividade elétrica entre 13 a 2.000 micromhos por centímetro, sendo que as mais condutivas são as da região da bacia do Rio Tijucaquara; sílica com teor médio de 10,4 mg/l; ferro total com teor máximo de 4,0 mg/l; cálcio e magnésio com teores bastante baixos implicando em águas moles na maioria das vezes; manganês com teor máximo de 0,15 mg/l; nitrogênio e fosforo com concentrações bastante baixas. O sódio e potássio são os elementos químicos que visualizam com facilidade a variação sazonal do quimismo dessas éguas. Nos finais dos períodos chuvosos essas águas subterrâneas são menos salinizadas, por outro lado, nos períodos de pequenas precipitações até início da estação chuvosa, o excesso de sais impede a potabilidade de várias dessas águas. O uso doméstico dessas águas está limitado normalmente pelas seguintes características: pH ácido; ferro total acima de 0,3 mg/l com máximo de 4,0 mg/l em várias delas; isentas de fluoretos; excesso de manganês em algumas delas (0,15 mg/l); excesso de cloreto em um piezômetro. O uso dessas águas subterrâneas na agricultura pode estar limitado em alguns locais da área onde: pH menor que 5,0; condutividades altas durante os períodos de menor precipitação; altas porcentagens de sódio (83% a 97%).
Resumo:
Este trabalho foi realizado numa área de 25 km2 em Ponta de Pedras, Ilha de Marajó. Tem por objetivo o dimensionamento geométrico e seleção de zonas favoráveis à água subterrânea. Foram utilizados dois métodos geofísicos: sísmica de refração e eletroresistividade. O método sísmico foi empregado em caráter experimental, visando verificar a viabilidade de sua aplicação na área. Os resultados da interpretação confirmaram a suspeita inicial, da existência de horizontes geológicos pouco profundos, não possíveis de serem distinguidos pelo método sísmico. Com o método de eletroresistividade foram feitas sondagens verticais e perfis horizontais. Os resultados da interpretação indicaram áreas promissoras na parte central e numa faixa ao norte da área prospectada. A espessura do aquífero raso varia entre 0 e 50 m.
Resumo:
Throughout the world, pressures on water resources are increasing, mainly as a result of human activity. Because of their accessibility, groundwater and surface water are the most used reservoirs. The evaluation of the water quality requires the identification of the interconnections among the water reservoirs, natural landscape features, human activities and aquatic health. This study focuses on the estimation of the water pollution linked to two different environmental issues: salt water intrusion and acid mine drainage related to the exploitation of natural resources. Effects of salt water intrusion occurring in the shallow aquifer north of Ravenna (Italy) was analysed through the study of ion- exchange occurring in the area and its variance throughout the year, applying a depth-specific sampling method. In the study area were identified ion exchange, calcite and dolomite precipitation, and gypsum dissolution and sulphate reduction as the main processes controlling the groundwater composition. High concentrations of arsenic detected only at specific depth indicate its connexion with the organic matter. Acid mine drainage effects related to the tin extraction in the Bolivian Altiplano was studied, on water and sediment matrix. Water contamination results strictly dependent on the seasonal variation, on pH and redox conditions. During the dry season the strong evaporation and scarce water flow lead to low pH values, high concentrations of heavy metals in surface waters and precipitation of secondary minerals along the river, which could be released in oxidizing conditions as demonstrated through the sequential extraction analysis. The increase of the water flow during the wet season lead to an increase of pH values and a decrease in heavy metal concentrations, due to dilution effect and, as e.g. for the iron, to precipitation.
Resumo:
This project addresses the potential impacts of changing climate on dry-season water storage and discharge from a small, mountain catchment in Tanzania. Villagers and water managers around the catchment have experienced worsening water scarcity and attribute it to increasing population and demand, but very little has been done to understand the physical characteristics and hydrological behavior of the spring catchment. The physical nature of the aquifer was characterized and water balance models were calibrated to discharge observations so as to be able to explore relative changes in aquifer storage resulting from climate changes. To characterize the shallow aquifer supplying water to the Jandu spring, water quality and geochemistry data were analyzed, discharge recession analysis was performed, and two water balance models were developed and tested. Jandu geochemistry suggests a shallow, meteorically-recharged aquifer system with short circulation times. Baseflow recession analysis showed that the catchment behavior could be represented by a linear storage model with an average recession constant of 0.151/month from 2004-2010. Two modified Thornthwaite-Mather Water Balance (TMWB) models were calibrated using historic rainfall and discharge data and shown to reproduce dry-season flows with Nash-Sutcliffe efficiencies between 0.86 and 0.91. The modified TMWB models were then used to examine the impacts of nineteen, perturbed climate scenarios to test the potential impacts of regional climate change on catchment storage during the dry season. Forcing the models with realistic scenarios for average monthly temperature, annual precipitation, and seasonal rainfall distribution demonstrated that even small climate changes might adversely impact aquifer storage conditions at the onset of the dry season. The scale of the change was dependent on the direction (increasing vs. decreasing) and magnitude of climate change (temperature and precipitation). This study demonstrates that small, mountain aquifer characterization is possible using simple water quality parameters, recession analysis can be integrated into modeling aquifer storage parameters, and water balance models can accurately reproduce dry-season discharges and might be useful tools to assess climate change impacts. However, uncertainty in current climate projections and lack of data for testing the predictive capabilities of the model beyond the present data set, make the forecasts of changes in discharge also uncertain. The hydrologic tools used herein offer promise for future research in understanding small, shallow, mountainous aquifers and could potentially be developed and used by water resource professionals to assess climatic influences on local hydrologic systems.
Resumo:
The scope of this PhD thesis was the hydrogeological conceptualisation of the Upper Ouémé river catchment in Benin. The study area exceeds 14,500 km**2 and is underlain by a crystalline basement. At this setting the typical sequence of aquifers - a regolith aquifer at the top and a fractured bedrock aquifer at the bottom - is encountered, which is found in basement areas all over Africa and elsewhere in the world. The chosen regional approach revealed important information about the hydrochemistry and hydrogeology of this catchment. Based on the regional conceptual model a numerical groundwater flow model was designed. The numerical model was used to estimate the impact of climate change on the regional groundwater resources. This study was realised within the framework of the German interdisciplinary research project IMPETUS (English translation: "Integrated approach to the efficient management of scarce water resources in West Africa"), which is jointly managed by the German universities of Bonn and Cologne. Since the year 2000 the Upper Ouémé catchment was the principal target for investigations into the relevant processes of the regional water cycle. A first study from 2000 to 2003 (Fass, 2004, http://nbn-resolving.de/urn:nbn:de:hbz:5n-03849) focused on the hydrogeology of a small local catchment (~30 km**2). In the course of this thesis five field campaigns were underdone from the year 2004 to 2006. In the beginning of 2004 a groundwater monitoring net was installed based on 12 automatic data loggers. Manual piezometric measurements and the sampling of groundwater and surface water were realised for each campaign throughout the whole study area. Water samples were analysed for major ions, for a choice of heavy metals and for their composition by deuterium, oxygen-18 and tritium. The numerical model was performed with FEFLOW. The hydraulic and hydrochemical characteristics were described for the regolith aquifer and the bedrock aquifer. The regolith aquifer plays the role of the groundwater stock with low conductivity while the fractures of the bedrock may conduct water relatively fast towards extraction points. Flow in fractures of the bedrock depends on the connectivity of the fracture network which might be of local to subregional importance. Stable isotopes in combination with hydrochemistry proved that recharge occurs on catchment scale and exclusively by precipitation. Influx of groundwater from distant areas along dominant structures like the Kandi fault or from the Atacora mountain chain is excluded. The analysis of tritium in groundwater from different depths revealed the interesting fact of the strongly rising groundwater ages. Bedrock groundwater may possibly be much older than 50 years. Equilibrium phases of the silicate weathering products kaolinite and montmorillonite showed that the deeper part of the regolith aquifer and the bedrock aquifer feature either stagnant or less mobile groundwater while the shallow aquifer level is influenced by seasonal groundwater table fluctuations. The hydrochemical data characterised this zone by the progressive change of the hydrochemical facies of recently infiltrated rainwater on its flow path into deeper parts of the aquifers. Surprisingly it was found out that seasonal influences on groundwater hydrochemistry are minor, mainly because they affect only the groundwater levels close to the surface. The transfer of the hydrogeological features of the Upper Ouémé catchment into a regional numerical model demanded a strong simplification. Groundwater tables are a reprint of the general surface morphology. Pumping or other types of groundwater extraction would have only very local impact on the available groundwater resources. It was possible to integrate IMPETUS scenario data into the groundwater model. As a result it was shown that the impact of climate change on the groundwater resources until the year 2025 under the given conditions will be negligible due to the little share of precipitation needed for recharge and the low water needs for domestic use. Reason for concern is the groundwater quality on water points in the vicinity of settlements because of contamination by human activities as shown for the village of Dogué. Nitrate concentrations achieved in many places already alerting levels. Health risks from fluoride or heavy metals were excluded for the Upper Ouémé area.
Resumo:
CO2 leakage from subsurface storage sites is one of the main concerns connected with the CCS technology. As CO2 leakages into near surface formations appear to be very unlikely within pilot CCS projects, the aim of this work is to emulate a leakage by injecting CO2 into a near surface aquifer. The two main questions pursued by the injection test are (1) to investigate the impact of CO2 on the hydrogeochemistry of the groundwater as a base for groundwater risk assessment and (2) to develop and apply monitoring methods and monitoring concepts for detecting CO2 leakages in shallow aquifers. The presented injection test is planned within the second half of 2010, as a joint project of the University of Kiel (Germany), the Helmholtz-Centre for Environmental Research (Leipzig, Germany) and the Engineering Company GICON (Dresden, Germany). The test site has been investigated in detail using geophysical methods as well as direct-push soundings, groundwater well installation and soil and groundwater analyses. The present paper presents briefly the geological and hydrogeological conditions at the test site as well as the planned injection test design and monitoring concept.