900 resultados para Severe asthma
Resumo:
Background: Inhaled corticosteroids (ICSs) are recommended as the first line of treatment in children with moderate-to-severe asthma. Exhaled nitric oxide (ENO) has been proposed as a clinically useful marker of control that might help identify patients in whom ICS dose may be safely reduced. Objective: To evaluate the ability of ENO to predict future asthma exacerbations in children with moderate-to-severe asthma undergoing ICS tapering. Methods: This is an observational study with no control group. ENO was measured biweekly for 14 weeks in 32 children with moderate-to-severe asthma who were undergoing ICS tapering. Clinical evaluations and spirometry were performed concomitantly, and families kept daily diaries to record symptoms between visits. We used generalized estimating equations to model the In (odds) of an asthma exacerbation in the subsequent 2-week interval as a function of ENO level at the start of the interval while adjusting for age, sex, asthma severity, and current medication use. Results: We were able to successfully lower ICS doses in 10 (56%) of the 18 children with moderate asthma and in 3 (21%) of the 14 children with severe asthma. In 83 of the 187 follow-up clinical evaluations, children were determined to have had an exacerbation during the preceding 2 weeks. ENO levels, whether expressed as a continuous variable or dichotomized, were not associated with future risk for exacerbations in either unadjusted or adjusted models. Conclusion: ENO was not a useful clinical predictor of future asthma exacerbations for children with moderate-to-severe asthma undergoing ICS tapering. Ann Allergy Asthma Immunol. 2009; 103:206-211.
Resumo:
Severe asthma is a heterogeneous disease that affects only 5%-10% of asthmatic patients, although it accounts for a significant percentage of the consumption of health care resources. Severe asthma is characterized by the need for treatment with high doses of inhaled corticosteroids and includes several clinical and pathophysiological phenotypes. To a large extent, this heterogeneity restricts characterization of the disease and, in most cases, hinders the selection of appropriate treatment. In recent years, therefore, emphasis has been placed on improving our understanding of the various phenotypes of severe asthma and the identification of biomarkers for each of these phenotypes. Likewise, the concept of the endotype has been gaining acceptance with regard to the various subtypes of the disease, which are classified according to their unique functional or pathophysiological mechanism. This review discusses the most relevant aspects of the clinical and inflammatory phenotypes of severe asthma, including severe childhood asthma and the various endotypes of severe asthma. The main therapeutic options available for patients with uncontrolled severe asthma will also be reviewed.
Resumo:
Objective: to present the effectiveness of pulmonary rehabilitation programs in the treatmentof a patient with asthma, this is the case of a young Caucasian girl —17 years old— with severe asthma diagnosis, with symptoms since she was eight years old, 10th grade student. Method: She was referred to the program of Pulmonary Rehabilitation after three hospitalizations during the last year due to asthmatic crises, dyspnoea in activities of daily living, and intolerance to physical exercise. In the initial evaluation, a patient with non-controlled asthma was found; she was receiving short-acting medication admitting that she was not complying with regular use and with a prescribed dose of the pharmacological treatment and that she ignored the importance of this commitment for optimal evolution. The patient expressed concern about the progressive deterioration at her respiratory and functional level during the last year and her fear and anxiety for not being able to breathe during activities befitting her age. Results: One month after receiving bronchodilators and long-acting steroids permanently and complying with recommendations about regular use and adequate inhalatory technique, the patient was included in a three-times a-week program of pulmonary rehabilitation during eight weeks for upper and lower extremity endurance and resistance training. Conclusion: This intervention showed significant changes in the patient at functional level and a greater social participation.
Resumo:
Background: Currently, there are no studies of well-characterized severe asthmatics in Brazil. We aimed to study a population of severe treated asthmatics still uncontrolled to characterize them and define possible phenotypes. Methods: Descriptive cross-sectional outpatient study of severe asthmatics, evaluating functional and inflammatory markers, health-related quality of life, anxiety and depression symptoms, clinical control status, and characteristics related to atopy, age of asthma onset, induced sputum eosinophil levels, and airflow limitation. We also grouped the subgroups characteristics to identify phenotypes. The study is registered on ClinicalTrial.gov NCT 01089322. Results: From 128 eligible patients with severe/uncontrolled asthma, 74 fulfilled the inclusion criteria. The cohort was comprised of 85% women, frequently with a body mass index higher than 31 kg m(-2), atopy (60%), early-onset disease (50%), sputum eosinophilia (80%), comorbidities, and reduced quality of life. Nonatopics had significant higher asthma onset (19 y.a.) and twice level of induced sputum eosinophil. Late-onset patients had significantly less atopy (57%) and higher levels of induced sputum eosinophils. Non-eosinophilics had lower levels of inflammatory markers. Patients with airflow limitation had more intensive care unit admissions (56%) and 1.5 times more airway resistance. Subgroups characteristics identified a priori four well-characterized phenotypes, with 55% presenting sputum eosinophilia. Conclusion: Our data emphasize the high burden of disease, the persistence of inflammation and the existence of clinical possible phenotypes population sharing common features with published cohorts. Despite the necessity of further investigation into pathogenic mechanisms, this study with clinically difficult patient group may help to improve future asthma care. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Previous studies in adults with asthma incorporating the control of sputum eosinophils into management strategies have shown significant reductions in exacerbations. A study was undertaken to investigate whether this strategy would be successful in children with severe asthma.
Resumo:
BACKGROUND: The pathology of pediatric severe therapy-resistant asthma (STRA) is little understood. OBJECTIVES: We hypothesized that STRA in children is characterized by airway eosinophilia and mast cell inflammation and is driven by the T(H)2 cytokines IL-4, IL-5, and IL-13. METHODS: Sixty-nine children (mean age, 11.8 years; interquartile range, 5.6-17.3 years; patients with STRA, n = 53; control subjects, n = 16) underwent fiberoptic bronchoscopy, bronchoalveolar lavage (BAL), and endobronchial biopsy. Airway inflammation, remodeling, and BAL fluid and biopsy specimen T(H)2 cytokines were quantified. Children with STRA also underwent symptom assessment (Asthma Control Test), spirometry, exhaled nitric oxide and induced sputum evaluation. RESULTS: Children with STRA had significantly increased BAL fluid and biopsy specimen eosinophil counts compared with those found in control subjects (BAL fluid, P < .001; biopsy specimen, P < .01); within the STRA group, there was marked between-patient variability in eosinophilia. Submucosal mast cell, neutrophil, and lymphocyte counts were similar in both groups. Reticular basement membrane thickness and airway smooth muscle were increased in patients with STRA compared with those found in control subjects (P < .0001 and P < .001, respectively). There was no increase in BAL fluid IL-4, IL-5, or IL-13 levels in patients with STRA compared with control subjects, and these cytokines were rarely detected in induced sputum. Biopsy IL-5(+) and IL-13(+) cell counts were also not higher in patients with STRA compared with those seen in control subjects. The subgroup (n = 15) of children with STRA with detectable BAL fluid T(H)2 cytokines had significantly lower lung function than those with undetectable BAL fluid T(H)2 cytokines. CONCLUSIONS: STRA in children was characterized by remodeling and variable airway eosinophil counts. However, unlike in adults, there was no neutrophilia, and despite the wide range in eosinophil counts, the T(H)2 mediators that are thought to drive allergic asthma were mostly absent.
Resumo:
Asthma is an increasing health problem worldwide, but the long-term temporal pattern of clinical symptoms is not understood and predicting asthma episodes is not generally possible. We analyse the time series of peak expiratory flows, a standard measurement of airway function that has been assessed twice daily in a large asthmatic population during a long-term crossover clinical trial. Here we introduce an approach to predict the risk of worsening airflow obstruction by calculating the conditional probability that, given the current airway condition, a severe obstruction will occur within 30 days. We find that, compared with a placebo, a regular long-acting bronchodilator (salmeterol) that is widely used to improve asthma control decreases the risk of airway obstruction. Unexpectedly, however, a regular short-acting beta2-agonist bronchodilator (albuterol) increases this risk. Furthermore, we find that the time series of peak expiratory flows show long-range correlations that change significantly with disease severity, approaching a random process with increased variability in the most severe cases. Using a nonlinear stochastic model, we show that both the increased variability and the loss of correlations augment the risk of unstable airway function. The characterization of fluctuations in airway function provides a quantitative basis for objective risk prediction of asthma episodes and for evaluating the effectiveness of therapy.
Resumo:
U-BIOPRED is a European Union consortium of 20 academic institutions, 11 pharmaceutical companies and six patient organisations with the objective of improving the understanding of asthma disease mechanisms using a systems biology approach.This cross-sectional assessment of adults with severe asthma, mild/moderate asthma and healthy controls from 11 European countries consisted of analyses of patient-reported outcomes, lung function, blood and airway inflammatory measurements.Patients with severe asthma (nonsmokers, n=311; smokers/ex-smokers, n=110) had more symptoms and exacerbations compared to patients with mild/moderate disease (n=88) (2.5 exacerbations versus 0.4 in the preceding 12 months; p<0.001), with worse quality of life, and higher levels of anxiety and depression. They also had a higher incidence of nasal polyps and gastro-oesophageal reflux with lower lung function. Sputum eosinophil count was higher in severe asthma compared to mild/moderate asthma (median count 2.99% versus 1.05%; p=0.004) despite treatment with higher doses of inhaled and/or oral corticosteroids.Consistent with other severe asthma cohorts, U-BIOPRED is characterised by poor symptom control, increased comorbidity and airway inflammation, despite high levels of treatment. It is well suited to identify asthma phenotypes using the array of "omic" datasets that are at the core of this systems medicine approach.
Resumo:
Background: The cysteinyl-leukotrienes (cys-LTs) are proinflammatory mediators that are important in the pathophysiology of asthma. LTC4 synthase is a key enzyme in the cys-LT biosynthetic pathway, and studies in small populations have suggested that a promoter polymorphism (A(-444)C) in the gene might be associated with asthma severity and aspirin intolerance. Objective: We sought to screen the LTC4 synthase gene for polymorphisms and to determine whether there is an association between these polymorphisms and asthma severity or aspirin sensitivity in a large, well-phenotyped population and to determine whether this polymorphism is functionally relevant. Methods: The coding regions of the LTC4 synthase gene were screened for polymorphisms and the A(-444)C polymorphism was analyzed in a large Australian white adult population of mild (n = 282), moderate (n = 236), and severe asthmatic subjects (n = 86) and nonasthmatic subjects (n = 458), as well as in aspirin-intolerant asthmatic subjects (n = 67). The functional activity of the promoter polymorphism was investigated by transient transfection of HL-60 cells with a promoter construct. Results: A new polymorphism was identified in intron 1 of the gene (IVS1-10c>a) but was not associated with asthma. Association studies showed that the A(-444)C polymorphism was weakly associated with asthma per se, but there was no association between the C-444 allele and chronic asthma severity or aspirin intolerance. A meta-analysis of all the genetic studies conducted to date found significant between-study heterogeneity in C-444 allele frequencies within different clinical subgroups. In vitro functional studies showed no significant differences in transcription efficiency between constructs containing the A(-444) allele or the C-444 allele. Conclusions: Our data confirm that, independent of transcriptional activity, the C-444 allele in the LTC4 synthase gene is weakly associated with the asthma phenotype, but it is not related to disease severity or aspirin intolerance.
Resumo:
Acute severe asthma is defined by the occurrence of an acute exacerbation resistant to the initial medical treatment, complicated by life-threatening respiratory distress due to severe lung hyperinflation. The conventional therapeutic approach is based on oxygen therapy and on the combined treatment of inhaled beta2-agonists at repeated doses and systemic corticosteroids. Inhaled or systemic magnesium sulfate is also recommended. The unresponsiveness to the initial bronchodilating therapy and the development of respiratory distress requiring intubation significantly increases mortality, due to the complications induced by mechanical ventilation. In these situations, a ventilatory strategy, including controlled hypoventilation with permissive hypercapnia, aiming at preventing lung hyperinflation, is indicated. Non-invasive ventilation may be successful in certain patients and represents an effective alternative to intubation. In ventilated patients, helium-oxygen mixtures can be considered as adjunctive therapies. After having reviewed the basic pathophysiological principles, this article will focus on the current medical treatment and of the modalities of mechanical ventilation in acute severe asthma.
Resumo:
Severe asthma represents a major unmet clinical need. Eosinophilic inflammation persists in the airways of many patients with uncontrolled asthma, despite high-dose inhaled corticosteroid therapy. Suppressors of cytokine signalling (SOCS) are a family of molecules involved in the regulation of cytokine signalling via inhibition of the Janus kinase-signal transducers and activators of transcription pathway. We examined SOCS expression in the airways of asthma patients and investigated whether this is associated with persistent eosinophilia.
Healthy controls, mild/moderate asthmatics and severe asthmatics were studied. Whole genome expression profiling, quantitative PCR and immunohistochemical analysis were used to examine expression of SOCS1, SOCS2 and SOCS3 in bronchial biopsies. Bronchial epithelial cells were utilised to examine the role of SOCS1 in regulating interleukin (IL)-13 signalling in vitro.
SOCS1 gene expression was significantly lower in the airways of severe asthmatics compared with mild/moderate asthmatics, and was inversely associated with airway eosinophilia and other measures of T-helper type 2 (Th2) inflammation. Immunohistochemistry demonstrated SOCS1 was predominantly localised to the bronchial epithelium. SOCS1 overexpression inhibited IL-13-mediated chemokine ligand (CCL) 26 (eotaxin-3) mRNA expression in bronchial epithelial cells.
Severe asthma patients with persistent airway eosinophilia and Th2 inflammation have reduced airway epithelial SOCS1 expression. SOCS1 inhibits epithelial IL-13 signalling, supporting its key role in regulating Th2-driven eosinophilia in severe asthma.
Resumo:
Background Peripheral muscle strength and endurance are decreased in patients with chronic pulmonary diseases and seem to contribute to patients' exercise intolerance. However, the authors are not aware of any studies evaluating peripheral muscle function in children with asthma. It seems to be implied that children with asthma have lower aerobic fitness, but there are limited studies comparing the aerobic capacity of children with and without asthma. The present study aimed to evaluate muscle strength and endurance in children with persistent asthma and their association with aerobic capacity and inhaled corticosteroid consumption. Methods Forty children with mild persistent asthma (MPA) or severe persistent asthma (SPA) (N=20 each) and 20 children without asthma (control group) were evaluated. Upper (pectoralis and latissimus dorsi) and lower (quadriceps) muscle strength and endurance were assessed, and cardiopulmonary exercise testing was performed. Inhaled corticosteroid consumption during the last 6 and 24 months was also quantified. Results Children with SPA presented a reduction in peak oxygen consumption (VO(2)) (28.2 +/- 8.1 vs 34.7 +/- 6.9 ml/kg/min; p<0.01) and quadriceps endurance (43.1 +/- 6.7 vs 80.9 +/- 11.9 repetitions; p<0.05) compared with the control group, but not the MPA group (31.5 +/- 6.1 ml/kg/min and 56.7 +/- 47.7 repetitions respectively; p>0.05). Maximal upper and lower muscle strength was preserved in children with both mild and severe asthma (p>0.05). Finally, the authors observed that lower muscle endurance weakness was not associated with reductions in either peak VO(2) (r=0.22, p>0.05) or corticosteroid consumption (r=-0.31, p>0.05) in children with asthma. Conclusion The findings suggest that cardiopulmonary exercise and lower limb muscle endurance should be a priority during physical training programs for children with severe asthma.
Resumo:
Background. The mechanical alterations related to the overload of respiratory muscles observed in adults with persistent asthma might lead to the development of chronic alterations in posture, musculoskeletal dysfunction and pain; however, these changes remain poorly understood. Objective. This study aimed to assess postural alignment, muscle shortening and chronic pain in adults with persistent asthma. Methods. This cross-sectional and controlled study enrolled 30 patients with mild (n = 17) and severe ( n = 13) persistent asthma. Fifteen non-asthmatic volunteers were also assessed. Asthma was classified by the Global Initiative for Asthma (GINA) guidelines. Postural alignment and muscle shortening were evaluated by head and shoulder positions, chest wall mobility, and posterior ( trunk and lower limb) muscle flexibility. In addition, the measures used were previously tested for their reproducibility. Pain complaints were also assessed. Results. In comparison with non-asthmatic subjects, patients with mild or severe persistent asthma held their head and shoulders more forward and had lower chest wall expansion, decreased shoulder internal rotation, and decreased thoracic spine flexibility. Chronic lower thoracic, cervical, and shoulder pain was significantly increased in patients with mild or severe asthma compared with non-asthmatic subjects (p < 0.05). Conclusion. Adults with persistent asthma have musculoskeletal dysfunction and chronic pain that is independent of the severity of their disease but that might be related to their age at the onset of disease symptoms.
Resumo:
We developed a model of severe allergic inflammation and investigated the impact of airway and lung parenchyma remodelling on in vivo and in vitro respiratory mechanics. BALB/c mice were sensitized and challenged with ovalbumin in severe allergic inflammation (SA) group. The control group (C) received saline using the same protocol. Light and electron microscopy showed eosinophil and neutrophil infiltration and fibrosis in airway and lung parenchyma, mucus gland hyperplasia, and airway smooth muscle hypertrophy and hyperplasia in SA group. These morphological changes led to in vivo (resistive and viscoelastic pressures, and static elastance) and in vitro (tissue elastance and resistance) lung mechanical alterations. Airway responsiveness to methacholine was markedly enhanced in SA as compared with C group. Additionally, IL-4, IL-5, and IL-13 levels in the bronchoalveolar lavage fluid were higher in SA group. In conclusion, this model of severe allergic lung inflammation enabled us to directly assess the role of airway and lung parenchyma inflammation and remodelling on respiratory mechanics. (C) 2007 Elsevier B.V. All rights reserved.