928 resultados para Server consolidation
Resumo:
Improving energy efficiency has become increasingly important in data centers in recent years to reduce the rapidly growing tremendous amounts of electricity consumption. The power dissipation of the physical servers is the root cause of power usage of other systems, such as cooling systems. Many efforts have been made to make data centers more energy efficient. One of them is to minimize the total power consumption of these servers in a data center through virtual machine consolidation, which is implemented by virtual machine placement. The placement problem is often modeled as a bin packing problem. Due to the NP-hard nature of the problem, heuristic solutions such as First Fit and Best Fit algorithms have been often used and have generally good results. However, their performance leaves room for further improvement. In this paper we propose a Simulated Annealing based algorithm, which aims at further improvement from any feasible placement. This is the first published attempt of using SA to solve the VM placement problem to optimize the power consumption. Experimental results show that this SA algorithm can generate better results, saving up to 25 percentage more energy than First Fit Decreasing in an acceptable time frame.
Resumo:
Server consolidation using virtualization technology has become an important technology to improve the energy efficiency of data centers. Virtual machine placement is the key in the server consolidation. In the past few years, many approaches to the virtual machine placement have been proposed. However, existing virtual machine placement approaches to the virtual machine placement problem consider the energy consumption by physical machines in a data center only, but do not consider the energy consumption in communication network in the data center. However, the energy consumption in the communication network in a data center is not trivial, and therefore should be considered in the virtual machine placement in order to make the data center more energy-efficient. In this paper, we propose a genetic algorithm for a new virtual machine placement problem that considers the energy consumption in both the servers and the communication network in the data center. Experimental results show that the genetic algorithm performs well when tackling test problems of different kinds, and scales up well when the problem size increases.
Resumo:
Electricity cost has become a major expense for running data centers and server consolidation using virtualization technology has been used as an important technology to improve the energy efficiency of data centers. In this research, a genetic algorithm and a simulation-annealing algorithm are proposed for the static virtual machine placement problem that considers the energy consumption in both the servers and the communication network, and a trading algorithm is proposed for dynamic virtual machine placement. Experimental results have shown that the proposed methods are more energy efficient than existing solutions.
Resumo:
Live migration of multiple Virtual Machines (VMs) has become an indispensible management activity in datacenters for application performance, load balancing, server consolidation. While state-of-the-art live VM migration strategies focus on the improvement of the migration performance of a single VM, little attention has been given to the case of multiple VMs migration. Moreover, existing works on live VM migration ignore the inter-VM dependencies, and underlying network topology and its bandwidth. Different sequences of migration and different allocations of bandwidth result in different total migration times and total migration downtimes. This paper concentrates on developing a multiple VMs migration scheduling algorithm such that the performance of migration is maximized. We evaluate our proposed algorithm through simulation. The simulation results show that our proposed algorithm can migrate multiple VMs on any datacenter with minimum total migration time and total migration downtime.
Resumo:
Server consolidation using virtualization technology has become an important technology to improve the energy efficiency of data centers. Virtual machine placement is the key in the server consolidation technology. In the past few years, many approaches to the virtual machine placement have been proposed. However, existing virtual machine placement approaches consider the energy consumption by physical machines only, but do not consider the energy consumption in communication network, in a data center. However, the energy consumption in the communication network in a data center is not trivial, and therefore should be considered in the virtual machine placement. In our preliminary research, we have proposed a genetic algorithm for a new virtual machine placement problem that considers the energy consumption in both physical machines and the communication network in a data center. Aiming at improving the performance and efficiency of the genetic algorithm, this paper presents a hybrid genetic algorithm for the energy-efficient virtual machine placement problem. Experimental results show that the hybrid genetic algorithm significantly outperforms the original genetic algorithm, and that the hybrid genetic algorithm is scalable.
Resumo:
In order to simplify computer management, several system administrators are adopting advanced techniques to manage software configuration of enterprise computer networks, but the tight coupling between hardware and software makes every PC an individual managed entity, lowering the scalability and increasing the costs to manage hundreds or thousands of PCs. Virtualization is an established technology, however its use is been more focused on server consolidation and virtual desktop infrastructure, not for managing distributed computers over a network. This paper discusses the feasibility of the Distributed Virtual Machine Environment, a new approach for enterprise computer management that combines virtualization and distributed system architecture as the basis of the management architecture. © 2008 IEEE.
Resumo:
As advanced Cloud services are becoming mainstream, the contribution of data centers in the overall power consumption of modern cities is growing dramatically. The average consumption of a single data center is equivalent to the energy consumption of 25.000 households. Modeling the power consumption for these infrastructures is crucial to anticipate the effects of aggressive optimization policies, but accurate and fast power modeling is a complex challenge for high-end servers not yet satisfied by analytical approaches. This work proposes an automatic method, based on Multi-Objective Particle Swarm Optimization, for the identification of power models of enterprise servers in Cloud data centers. Our approach, as opposed to previous procedures, does not only consider the workload consolidation for deriving the power model, but also incorporates other non traditional factors like the static power consumption and its dependence with temperature. Our experimental results shows that we reach slightly better models than classical approaches, but simul- taneously simplifying the power model structure and thus the numbers of sensors needed, which is very promising for a short-term energy prediction. This work, validated with real Cloud applications, broadens the possibilities to derive efficient energy saving techniques for Cloud facilities.
Resumo:
We propose a new password-based 3-party protocol with a formal security proof in the standard model. Under reasonable assumptions we show that our new protocol is more efficient than the recent protocol of Abdalla and Pointcheval (FC 2005), proven in the random oracle model. We also observe some limitations in the model due to Abdalla, Fouque and Pointcheval (PKC 2005) for proving security of such protocols.
Resumo:
This report presents the current state and approach in Building Information Modelling (BIM). The report is focussed at providing a desktop audit of the current state and capabilities of the products and applications supporting BIM. This includes discussion on BIM model servers as well as discipline specific applications, for which the distinction is explained below. The report presented here is aimed at giving a broad overview of the tools and applications with respect to their BIM capabilities and in no way claims to be an exhaustive report for individual tools. Chapter 4 of the report includes the research and development agendas pertaining to the BIM approach based on the observations and analysis from the desktop audit.
Resumo:
This paper addresses the problem of constructing consolidated business process models out of collections of process models that share common fragments. The paper considers the construction of unions of multiple models (called merged models) as well as intersections (called digests). Merged models are intended for analysts who wish to create a model that subsumes a collection of process models - typically representing variants of the same underlying process - with the aim of replacing the variants with the merged model. Digests, on the other hand, are intended for analysts who wish to identify the most recurring fragments across a collection of process models, so that they can focus their efforts on optimizing these fragments. The paper presents an algorithm for computing merged models and an algorithm for extracting digests from a merged model. The merging and digest extraction algorithms have been implemented and tested against collections of process models taken from multiple application domains. The tests show that the merging algorithm produces compact models and scales up to process models containing hundreds of nodes. Furthermore, a case study conducted in a large insurance company has demonstrated the usefulness of the merging and digest extraction operators in a practical setting.
Resumo:
Symmetric multi-processor (SMP) systems, or multiple-CPU servers, are suitable for implementing parallel algorithms because they employ dedicated communication devices to enhance the inter-processor communication bandwidth, so that a better performance can be obtained. However, the cost for a multiple-CPU server is high and therefore, the server is usually shared among many users. The work-load due to other users will certainly affect the performance of the parallel programs so it is desirable to derive a method to optimize parallel programs under different loading conditions. In this paper, we present a simple method, which can be applied in SPMD type parallel programs, to improve the speedup by controlling the number of threads within the programs.