77 resultados para Serogroup-a
Resumo:
This paper reports on a Leptospira isolate of bovine origin and its identification as belonging to a previously unknown serovar, for which the name Topaz is proposed. The isolate (94-79970/3) was cultured from bovine urine from a north Queensland dairy farm in Australia. Strain 94-79970/3 grew at 30 °C in Ellinghausen McCullough Johnson Harris (EMJH) medium but failed to grow at 13 °C in EMJH medium or in the presence of 8-azaguanine. Serologically, strain 94-79970/3 produced titres against the Leptospira borgpetersenii serovar Tarassovi, the reference strain for the Tarassovi serogroup; however, no significant titres to any other serovars within the serogroup were obtained. Using 16S rRNA and DNA gyrase subunit B gene analysis, strain 94-79970/3 was identified as a member of the species Leptospira weilii. We propose that the serovar be named Topaz, after the location where the original isolate was obtained. The reference strain for this serovar is 94-79970/ 3 (=KIT 94-79970/35LT722).
Resumo:
The effectiveness of a vaccine is determined not only by the immunogenicity of its components, but especially by how widely it covers the disease-causing strains circulating in a given region. Because vaccine coverage varies over time, this study aimed to detect possible changes that could affect vaccine protection during a specific period in a southern European region. The 4CMenB vaccine is licensed for use in Europe, Canada, and Australia and is mainly directed against Neisseria meningitidis serogroup B. This vaccine contains four main immunogenic components: three recombinant proteins, FHbp, Nhba and NadA, and an outer membrane vesicle [PorA P1.4]. The allelic distribution of FHbp, Nhba, NadA, and PorA antigens in 82 invasive isolates (B and non-B serogroups) isolated from January 2008 to December 2013 were analyzed. 4CMenB was likely protective against 61.8% and 50% of serogroup B and non-B meningococci, respectively, in the entire period, but between 2012 and 2013, the predicted protection fell below 45% (42.1% for serogroup B isolates). The observed decreasing trend in the predicted protection during the 6 years of the study (X-2 for trend = 4.68, p=0.03) coincided with a progressive decrease of several clonal complexes (e. g., cc11, cc32 and cc41/44), which had one or more antigens against which the vaccine would offer protection.
Resumo:
Streptococcus pneumoniae serotype 6E has recently been described, but its long-term epidemiology is not well known. From 1981-2013, 704 serogroup 6 clinical isolates were obtained in Gipuzkoa, Basque Country, Spain. All invasive and one in four non-invasive isolates were included. Overall, 75, 97, 51 and 45 serotypes 6A, 6B, 6C and 6E isolates, respectively, were detected. No serotype 6D isolates were identified. The prevalence of serotypes 6E and 6B, but not that of serotypes 6A and 6C, declined after the introduction of pneumococcal conjugate vaccines. Serotype 6E isolates showed the highest resistance rate. Most serotype 6E isolates were ST90.
Resumo:
Baypamun® é um imunomodulador recomendado na profilaxia e terapêutica de enfermidades. No presente estudo, este produto foi usado em hamsters experimentalmente infectados com Leptospira interrogans, sorogrupo canicola. Estes animais foram divididos em 5 grupos com 20 animais cada. O produto foi usado como terapêutico, profilático e como adjuvante. Quando usado de forma terapêutica, todos os animais vieram a óbito. Quando usado na profilaxia, 8 animais (40%) sobreviveram e foi possível recuperar o agente a partir dos rins desses animais. Baseado na análise do título de anticorpos nos animais que receberam ou não o Baypamun como adjuvante vacinal, o produto não elevou a resposta humoral. Os resultados sugerem, entretanto, outros estudos que utilizem o produto por períodos mais prolongados, além de se verificar a resposta celular para se avaliar o seu efeito como adjuvante nas infecções.
Resumo:
Children and adolescents infected with HIV typically have a lower response to immunization than do those in the general population. In most developed countries, meningococcal serogroup C conjugate vaccine is one of the recommended vaccines for such individuals. However, there have been no studies evaluating the antibody response to this vaccine in HIV-infected children, adolescents or young adults. In this study, we evaluated that response using serum bactericidal antibody (SBA) and enzyme-linked immunosorbent assay, comparing HIV-infected with non-HIV-infected patients, as well as analysing the occurrence of side effects. In non-responders, we assessed the antibody response to revaccination. This clinical trial involved 92 patients between 10 and 20 years of age: 43 HIV-infected patients (HIV+ group) and 49 non-HIV-infected patients (HIV- group). After one dose of the vaccine, 72.1% of the HIV+ group patients and 100% of the HIV- group patients were considered protected. Of the HIV+ group patients who received a second dose of the vaccine, only 40% acquired protection. Overall, 81.4% of the HIV+ group patients acquired protection (after one or two doses of the vaccine). Side effects occurred in 16.3% and 44% of the HIV+ group and HIV- group patients, respectively. Therefore, the meningococcal serogroup C conjugate vaccine proved to be safe and effective for use in HIV-infected children, adolescents, and young adults, although their antibody response was weaker than that shown by non-HIV-infected patients. This indicates the need to discuss changes to the immunization schedule for children, adolescents, and young adults infected with HIV, in order to ensure more effective protection against meningococcal disease. (c) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Introduction of genetic elements derived from a viral pathogen's genome may be used to reduce the vectorial capacity of mosquitoes for that virus. A double subgenomic Sindbis virus expression system was utilized to transcribe sequences of LaCrosse (LAC) virus small (S) or medium (M) segment RNA in sense or antisense orientation; wild-type Sindbis and LaCrosse viruses have single-stranded RNA genomes, the former being positive sense and the latter being negative sense. Recombinant viruses were generated and used to infect Aedes albopictus (C6/36) mosquito cells, which were challenged with wild-type LAC virus and then assayed for LAC virus replication. Several recombinant viruses containing portions of the LAC S segment were capable of inducing varying degrees of interference to the challenge virus. Cells infected with TE/3'2J/ANTI-S virus, expressing full-length negative-sense S RNA of LAC virus, yielded 3-6 log10TCID50 (tissue culture 50% infective dose) less LAC virus per ml than did cells infected with a double subgenomic sindbis virus containing no LAC insert. When C6/36 cells infected with TE/3'2J/ANTI-S were challenged with closely related heterologous bunyaviruses, a similar inhibitory effect was seen. Adult Ae. triseriatus mosquitoes infected with TE/3'2J/ANTI-S were also resistant to challenge by LAC virus. Organs that were productively infected by the double subgenomic Sindbis virus expressing the LAC anti-S sequences demonstrated little LAC virus or antigen. These studies indicate that expression of carefully selected antiviral sequences derived from the pathogen's genome may result in efficacious molecular viral interference in mosquito cells and, more importantly, in mosquitoes.
Resumo:
Concurrent analysis of antibiotic resistance of colonising and invasive Streptococcus pneumoniae gives a more accurate picture than looking at either of them separately. Therefore, we analysed 2,129 non-invasive and 10,996 invasive pneumococcal isolates from Switzerland from 2004 to 2014, which spans the time before and after the introduction of the heptavalent (PCV7) and 13-valent (PCV13) conjugated pneumococcal polysaccharide vaccines. Serotype/serogroup information was linked with all antibiotic resistance profiles. During the study period, the proportion of non-susceptible non-invasive and invasive isolates significantly decreased for penicillin, ceftriaxone, erythromycin and trimethoprim/sulfamethoxazole (TMP-SMX). This was most apparent in non-invasive isolates from study subjects younger than five years (penicillin (p = 0.006), erythromycin (p = 0.01) and TMP-SMX (p = 0.002)). Resistant serotypes/serogroups included in PCV7 and/or PCV13 decreased and were replaced by non-PCV13 serotypes (6C and 15B/C). Serotype/serogroup-specific antibiotic resistance rates were comparable between invasive and non-invasive isolates. Adjusted odds ratios of serotype/serogroup-specific penicillin resistance were significantly higher in the west of Switzerland for serotype 6B (1.8; 95% confidence interval (CI): 1.4-4.8), 9V (3.4; 95% CI: 2.0-5.7), 14 (5.3; 95% CI: 3.8-7.5), 19A (2.2; 95% CI: 1.6-3.1) and 19F (3.1; 95% CI: 2.1-4.6), probably due to variations in the antibiotic consumption.
Resumo:
The distribution of 19 major virulence genes and the presence of plasmids were surveyed in 141 Legionella pneumophila serogroup (SG) 1 isolates from patients and water in Queensland, Australia. The results showed that 16 of the virulence genes examined were present in all isolates, suggesting that they are life-essential genes for isolates in the environment and host cells. The 65 kb pathogenicity island identified originally in strain Philadelphia-1(T) was detected more frequently in isolates from water (44.2 %) than in those from patients (2.7 %), indicating that the 65 kb DNA fragment may aid the survival of L. pneumophila in the sampled environment. However, the low frequency of the 65 kb fragment in isolates from patients suggests that the pathogenicity island may not be necessary for L. pneumophila to cause disease. Plasmids were not detected in the L. pneumophila SG1 isolates from patients or water studied. There was an association of both lvh and rtxA with the virulent and predominant genotype detected by amplified fragment length polymorphism, termed AF1, whereas the avirulent common isolate from water termed AF16 did not have lvh or rtxA genes, with the exception of one isolate with rtxA. It was found that a PCR detection test strategy with lvh and rtxA as pathogenesis markers would be useful for determining the infection potential of an isolate.
Resumo:
The cross-protection and haemagglutination-inhibition antibodies present in chickens vaccinated with one of the nine currently recognized Kume haemagglutinin serovars of Haemophilus paragallinarum were investigated. The results confirmed the widely accepted dogma that serogroups A, B, and C represent three distinct immunovars. Within Kume serogroup A, there was generally good cross-protection among all four serovars. However, within Kume serogroup C, there was evidence of a reduced level of cross protection between some of the four serovars. The haemagglutination-inhibition antibody levels generally showed the same trend as with the cross-protection results. This study suggests that some apparent field failures of infectious coryza vaccines may be due to a lack of cross-protection between the vaccine strains and the field strains. Our results will help guide the selection of strains for inclusion in infectious coryza vaccines.
Resumo:
AIMS: To examine pigs at slaughter in New Zealand for the presence of Pasteurella multocida, and to determine for isolates, their biochemical profi les, somatic and capsular types, and the presence or absence of the HSB and toxA genes, associated with haemorrhagic septicaemia (HS) and progressive atrophic rhinitis (PAR), respectively. METHODS: Swabs from 173 lungs, 158 palatine tonsils and 82 nasal passages of pigs at two abattoirs in New Zealand were cultured for P. multocida using conventional techniques, and isolated colonies were subjected to biochemical tests for identi- fi cation of biovars. Somatic serotyping was conducted using an agar gel immunodiffusion (AGID) test. Polymerase chain reaction (PCR) assays were used to confi rm phenotypic identifi cation of colonies using species-specifi c primers, capsule type using serogroup-specifi c primers and multiplex PCR, and to test for the presence of HSB and toxA genes. RESULTS: Pasteurella multocida was isolated from 11/173 (6.4%) lung, 32/158 (20.2%) palatine tonsil and 5/82 (6.1 %) nasal swab samples, a total of 48 isolates from 413 samples (11.6%). Isolation rates per farm ranged from 1–53% of tissue samples collected from pigs 5–6 months of age. On phenotypic characterisation, isolates were allocated to seven main biovars, viz 1, 2, 3, 5, 9, 12, and a dulcitol-negative variant of Biovar 8, the majority (30/48) being Biovar 3. Of the 42 isolates for which somatic serotyping was conducted, 10% were Serovar 1, 79% were Serovar 3, 2% were Serovar 6,1, 2% were Serovar 12, and 7% could not be typed. All 48 isolates were confi rmed as P. multocida using a species-specifi c PCR. In the capsular multiplex PCR, 92% of isolates were Capsular (Cap) type A, 2% were Cap D, and 6% could not be typed. None of the samples were positive for the HSB or toxA genes. CONCLUSION: Serovars or capsular types of P. multocida associated with HS or PAR in pigs were not detected. Establishment of species-specifi c, capsular and toxin PCR assays allowed the rapid screening of isolates of P. multocida, while serotyping provided an additional tool for epidemiological and tracing purposes.
Resumo:
The detection, distribution, molecular and biological properties, vector relations and control of tospoviruses present in Australia, including Tomato spotted wilt virus (TSWV), Capsicum chlorosis virus (CaCV) and Iris yellow spot virus (IYSV), are reviewed. TSWV occurs throughout Australia where it has caused serious sporadic epidemics since it was first described in the 1920s. The frequency and distribution of outbreaks has increased in the 1990s, with the arrival and dispersal of the western flower thrips (Frankliniella occidentalis) being one factor favouring this situation. The crops most frequently and severely affected are capsicum, lettuce, tomato, potato and several species of ornamentals. Minimal differences were found between the nucleocapsid (N) gene amino acid sequences of Australian isolates and these were most closely related to a clade of northern European isolates. CaCV was first detected in Australia in 1999 and is most closely related to Watermelon silver mottle virus, a serogroup IV tospovirus. The natural hosts include capsicum, tomato, peanut and Hoya spp. The virus also occurs in Thailand and Taiwan. IYSV was first found in Australia in 2003, infecting onion and leek, with the distribution in three States suggesting that the virus has been present for some time.
Capsicum chlorosis virus infecting Capsicum annuum in the East Kimberley region of Western Australia
Resumo:
Capsicum chlorosis virus (CaCV) was detected in field grown Capsicum annuum from Kununurra in northeast Western Australia. Identification of the Kununurra isolate (WA-99) was confirmed using sap transmission to indicator hosts, positive reactions with tospovirus serogroup IV-specific antibodies and CaCV-specific primers, and amino acid sequence comparisons that showed >97% identity with published CaCV nucleocapsid gene sequences. The reactions of indicator hosts to infection with WA-99 often differed from those of the type isolate from Queensland. The virus multiplied best when test plants were grown at warm temperatures. CaCV was not detected in samples collected in a survey of C. annuum crops planted in the Perth Metropolitan area.