993 resultados para Sequencing phylogenetic reconstruction
Resumo:
Twenty-eight microsatellite primer pairs developed from Fragaria vesca ‘Rügen’ were applied to sixteen accessions representing eight diploid Fragaria species. The number of alleles generated, the power of discrimination and the percentage of accessions where no PCR product could be amplified were calculated for each locus for the thirteen non-F. vesca accessions. A phylogeny was then generated for the species accessions sampled, using the presence or absence of alleles at the polymorphic loci as character states. Despite the problems inherent in phylogeny reconstruction from microsatellite data, the phylogeny showed some congruence with a previously published phylogeny of Fragaria, based on nucleotide sequence data. However, relationships inferred from microsatellite allele data were relatively unresolved and poorly supported. The genetic basis of allelic polymorphisms at specific loci was investigated through direct sequencing of the PCR products amplified by three primer pairs. The potential utility of sequence data generated from microsatellite loci in evolutionary studies of closely related species groups is briefly explored.
Resumo:
In this paper we determine the extent to which host-mediated mutations and a known sampling bias affect evolutionary studies of human influenza A. Previous phylogenetic reconstruction of influenza A (H3N2) evolution using the hemagglutinin gene revealed an excess of nonsilent substitutions assigned to the terminal branches of the tree. We investigate two hypotheses to explain this observation. The first hypothesis is that the excess reflects mutations that were either not present or were at low frequency in the viral sample isolated from its human host, and that these mutations increased in frequency during passage of the virus in embryonated eggs. A set of 22 codons known to undergo such “host-mediated” mutations showed a significant excess of mutations assigned to branches attaching sequences from egg-cultured (as opposed to cell-cultured) isolates to the tree. Our second hypothesis is that the remaining excess results from sampling bias. Influenza surveillance is purposefully biased toward sequencing antigenically dissimilar strains in an effort to identify new variants that may signal the need to update the vaccine. This bias produces an excess of mutations assigned to terminal branches simply because an isolate with no close relatives is by definition attached to the tree by a relatively long branch. Simulations show that the magnitude of excess mutations we observed in the hemagglutinin tree is consistent with expectations based on our sampling protocol. Sampling bias does not affect inferences about evolution drawn from phylogenetic analyses. However, if possible, the excess caused by host-mediated mutations should be removed from studies of the evolution of influenza viruses as they replicate in their human hosts.
Resumo:
Phylogenetic reconstructions of transmission events from individuals with acute human immunodeficiency virus (HIV) infection are conducted to illustrate this group's heightened infectivity. Varied definitions of acute infection and assumptions about observed phylogenetic clusters may produce misleading results. We conducted a phylogenetic analysis of HIV pol sequences from 165 European patients with estimated infection dates and calculated the difference between dates within clusters. Nine phylogenetic clusters were observed. Comparison of dates within clusters revealed that only 2 could have been generated during acute infection. Previous analyses may have incorrectly assigned transmission events to the acutely HIV infected when they were more likely to have occurred during chronic infection.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Academic and industrial research in the late 90s have brought about an exponential explosion of DNA sequence data. Automated expert systems are being created to help biologists to extract patterns, trends and links from this ever-deepening ocean of information. Two such systems aimed on retrieving and subsequently utilizing phylogenetically relevant information have been developed in this dissertation, the major objective of which was to automate the often difficult and confusing phylogenetic reconstruction process. ^ Popular phylogenetic reconstruction methods, such as distance-based methods, attempt to find an optimal tree topology (that reflects the relationships among related sequences and their evolutionary history) by searching through the topology space. Various compromises between the fast (but incomplete) and exhaustive (but computationally prohibitive) search heuristics have been suggested. An intelligent compromise algorithm that relies on a flexible “beam” search principle from the Artificial Intelligence domain and uses the pre-computed local topology reliability information to adjust the beam search space continuously is described in the second chapter of this dissertation. ^ However, sometimes even a (virtually) complete distance-based method is inferior to the significantly more elaborate (and computationally expensive) maximum likelihood (ML) method. In fact, depending on the nature of the sequence data in question either method might prove to be superior. Therefore, it is difficult (even for an expert) to tell a priori which phylogenetic reconstruction method—distance-based, ML or maybe maximum parsimony (MP)—should be chosen for any particular data set. ^ A number of factors, often hidden, influence the performance of a method. For example, it is generally understood that for a phylogenetically “difficult” data set more sophisticated methods (e.g., ML) tend to be more effective and thus should be chosen. However, it is the interplay of many factors that one needs to consider in order to avoid choosing an inferior method (potentially a costly mistake, both in terms of computational expenses and in terms of reconstruction accuracy.) ^ Chapter III of this dissertation details a phylogenetic reconstruction expert system that selects a superior proper method automatically. It uses a classifier (a Decision Tree-inducing algorithm) to map a new data set to the proper phylogenetic reconstruction method. ^
Resumo:
Objective: Hantaviruses are rodent-borne RNA viruses that have caused hantavirus cardiopulmonary syndrome in several Brazilian regions. In the present study, geographical distribution, seroprevalence, natural host range, and phylogenetic relations of rodent-associated hantaviruses collected from seven counties of Southeastern Brazil were evaluated. Methods: ELISA, RT-PCR and phylogenetic analysis were used in this study. Results: Antibodies to hantavirus were detected in Bolomys lasiurus, Akodon sp. and Oligoryzomys sp., performing an overall seroprevalence of 5.17%. All seropositive rodents were associated with grasslands or woods surrounded by sugar cane fields. Phylogenetic analysis of partial S- and M-segment sequences showed that viral sequences isolated from B. lasiurus specimens clustered with Araraquara virus. However, a sequence from Akodon sp. shared 100% similarity with Argentinian/Chilean viruses based on the partial S- segment amino acid sequence. Conclusion: These results indicate that there are associations between rodent reservoirs and hantaviruses in some regions of Southeastern Brazil, and suggest the existence of additional hantavirus genetic diversity and host ecology in these areas. Copyright (C) 2008 S. Karger AG, Basel
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Phylogenetic reconstructions are a major component of many studies in evolutionary biology, but their accuracy can be reduced under certain conditions. Recent studies showed that the convergent evolution of some phenotypes resulted from recurrent amino acid substitutions in genes belonging to distant lineages. It has been suggested that these convergent substitutions could bias phylogenetic reconstruction toward grouping convergent phenotypes together, but such an effect has never been appropriately tested. We used computer simulations to determine the effect of convergent substitutions on the accuracy of phylogenetic inference. We show that, in some realistic conditions, even a relatively small proportion of convergent codons can strongly bias phylogenetic reconstruction, especially when amino acid sequences are used as characters. The strength of this bias does not depend on the reconstruction method but varies as a function of how much divergence had occurred among the lineages prior to any episodes of convergent substitutions. While the occurrence of this bias is difficult to predict, the risk of spurious groupings is strongly decreased by considering only 3rd codon positions, which are less subject to selection, as long as saturation problems are not present. Therefore, we recommend that, whenever possible, topologies obtained with amino acid sequences and 3rd codon positions be compared to identify potential phylogenetic biases and avoid evolutionarily misleading conclusions.
Resumo:
The node-density effect is an artifact of phylogeny reconstruction that can cause branch lengths to be underestimated in areas of the tree with fewer taxa. Webster, Payne, and Pagel (2003, Science 301:478) introduced a statistical procedure (the "delta" test) to detect this artifact, and here we report the results of computer simulations that examine the test's performance. In a sample of 50,000 random data sets, we find that the delta test detects the artifact in 94.4% of cases in which it is present. When the artifact is not present (n = 10,000 simulated data sets) the test showed a type I error rate of approximately 1.69%, incorrectly reporting the artifact in 169 data sets. Three measures of tree shape or "balance" failed to predict the size of the node-density effect. This may reflect the relative homogeneity of our randomly generated topologies, but emphasizes that nearly any topology can suffer from the artifact, the effect not being confined only to highly unevenly sampled or otherwise imbalanced trees. The ability to screen phylogenies for the node-density artifact is important for phylogenetic inference and for researchers using phylogenetic trees to infer evolutionary processes, including their use in molecular clock dating. [Delta test; molecular clock; molecular evolution; node-density effect; phylogenetic reconstruction; speciation; simulation.]
Resumo:
Blastocrithidia culicis is a protozoan of the family Trypanosomatidae. It is a parasite of insects, but the presence of bacteriumlike endosymbionts in its cytoplasm led some investigators to study this protozoan. This trypanosomatid does not infect humans and although it is phylogenetically distant from Trypanosoma cruzi, it presents many morphological characteristics, which are similar. In previous studies our group showed the presence of a L27 ribosomal protein in T cruzi (named TcrL27) using a RT-PCR, which also resulted in the cloning, sequencing and expression of an unexpected ribosomal protein, L17, in Blastocrithidia culicis (BcL17). In this paper, Western blot analysis demonstrated that the anti-BcL17 antibody recognizes the presence of the same ribosomal protein either in Blastochritidia culicis and T. cruzi nuclear extracts. Besides, two similar bands (40 and 47 kDa) appeared also in T. cruzi isolated ribosomal proteins and B. culicis nuclear extract corroborating with the findings showed in the phylogenetic reconstruction. With respect to their localization within the ribosome, both the L17 and L27 ribosomal proteins appear to belong to the peptidyl-transferase site, and are therefore part of the key step in protein synthesis. Both ribosomal proteins bind spiramycin derivatives, being therefore compounds of the macrolides connection sites in the ribosome. These findings would open a possibility to better evaluate this issue.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This review focuses on the monoterpene, sesquiterpene, and diterpene synthases of plant origin that use the corresponding C10, C15, and C20 prenyl diphosphates as substrates to generate the enormous diversity of carbon skeletons characteristic of the terpenoid family of natural products. A description of the enzymology and mechanism of terpenoid cyclization is followed by a discussion of molecular cloning and heterologous expression of terpenoid synthases. Sequence relatedness and phylogenetic reconstruction, based on 33 members of the Tps gene family, are delineated, and comparison of important structural features of these enzymes is provided. The review concludes with an overview of the organization and regulation of terpenoid metabolism, and of the biotechnological applications of terpenoid synthase genes.
Resumo:
The cytokine hormone leptin is a key signalling molecule in many pathways that control physiological functions. Although leptin demonstrates structural conservation in mammals, there is evidence of positive selection in primates, lagomorphs and chiropterans. We previously reported that the leptin genes of the grey and harbour seals (phocids) have significantly diverged from other mammals. Therefore we further investigated the diversification of leptin in phocids, other marine mammals and terrestrial taxa by sequencing the leptin genes of representative species. Phylogenetic reconstruction revealed that leptin diversification was pronounced within the phocid seals with a high dN/dS ratio of 2.8, indicating positive selection. We found significant evidence of positive selection along the branch leading to the phocids, within the phocid clade, but not over the dataset as a whole. Structural predictions indicate that the individual residues under selection are away from the leptin receptor (LEPR) binding site. Predictions of the surface electrostatic potential indicate that phocid seal leptin is notably different to other mammalian leptins, including the otariids. Cloning the grey seal leptin binding domain of LEPR confirmed that this was structurally conserved. These data, viewed in toto, support a hypothesis that phocid leptin divergence is unlikely to have arisen by random mutation. Based upon these phylogenetic and structural assessments, and considering the comparative physiology and varying life histories among species, we postulate that the unique phocid diving behaviour has produced this selection pressure. The Phocidae includes some of the deepest diving species, yet have the least modified lung structure to cope with pressure and volume changes experienced at depth. Therefore, greater surfactant production is required to facilitate rapid lung re-inflation upon surfacing, while maintaining patent airways. We suggest that this additional surfactant requirement is met by the leptin pulmonary surfactant production pathway which normally appears only to function in the mammalian foetus.