4 resultados para SentiWordNet
Resumo:
In their second year, our undergraduate web scientists undertake a group project module (WEBS2002, led by Jonathon Hare & co-taught by Su White) in which they get to apply what they learnt in the first year to a practical web-science problem, and also learn about team-working. For the project this semester, the students were provided with a large dataset of geolocated images and associated metadata collected from the Flickr website. Using this data, they were tasked with exploring what this data could tell us about the world. In this seminar the two groups will present the outcomes of their work. Team Alpha (Ellie Hamilton, Clayton Jones & Alok Acharya) will present their work on "The relationship between Group Photos, Social Integration and Suicide". This work aims to explore whether levels of social integration (which Durkheim posited as a factor in "Egoistic Suicide" rates) can be predicted by measuring the proportion of photos of groups of people to photos of individuals within a geographical region. Team Bravo (Agnieszka Grzesiuk-Szolucha, Thomas Leese & Ammaar Tawil) will present their work on "Sentiment Analysis on Flickr Photo Tags to Classify a Photo as Positive or Negative, In Order to Determine the Happiness of a Country or Region". This work explores whether estimates of sentiment made by applying SentiWordNet to Flickr tags correlate with indices of world happiness and socio-economic well-being.
Resumo:
In this paper we present the enrichment of the Integration of Semantic Resources based in WordNet (ISR-WN Enriched). This new proposal improves the previous one where several semantic resources such as SUMO, WordNet Domains and WordNet Affects were related, adding other semantic resources such as Semantic Classes and SentiWordNet. Firstly, the paper describes the architecture of this proposal explaining the particularities of each integrated resource. After that, we analyze some problems related to the mappings of different versions and how we solve them. Moreover, we show the advantages that this kind of tool can provide to different applications of Natural Language Processing. Related to that question, we can demonstrate that the integration of semantic resources allows acquiring a multidimensional vision in the analysis of natural language.
Resumo:
En este trabajo se presenta un método para la detección de subjetividad a nivel de oraciones basado en la desambiguación subjetiva del sentido de las palabras. Para ello se extiende un método de desambiguación semántica basado en agrupamiento de sentidos para determinar cuándo las palabras dentro de la oración están siendo utilizadas de forma subjetiva u objetiva. En nuestra propuesta se utilizan recursos semánticos anotados con valores de polaridad y emociones para determinar cuándo un sentido de una palabra puede ser considerado subjetivo u objetivo. Se presenta un estudio experimental sobre la detección de subjetividad en oraciones, en el cual se consideran las colecciones del corpus MPQA y Movie Review Dataset, así como los recursos semánticos SentiWordNet, Micro-WNOp y WordNet-Affect. Los resultados obtenidos muestran que nuestra propuesta contribuye de manera significativa en la detección de subjetividad.
Resumo:
La presente herramienta informática constituye un software que es capaz concebir una red semántica con los siguientes recursos: WordNet versión 1.6 y 2.0, WordNet Affects versión 1.0 y 1.1, WordNet Domain versión 2.0, SUMO, Semantic Classes y Senti WordNet versión 3.0, todos integrados y relacionados en una única base de conocimiento. Utilizando estos recursos, ISR-WN cuenta con funcionalidades añadidas que permiten la exploración de dicha red de un modo simple aplicando funciones tanto como de recorrido como de búsquedas textuales. Mediante la interrogación de dicha red semántica es posible obtener información para enriquecer textos, como puede ser obtener las definiciones de aquellas palabras que son de uso común en determinados Dominios en general, dominios emocionales, y otras conceptualizaciones, además de conocer de un determinado sentido de una palabra su valoración proporcionada por el recurso SentiWordnet de positividad, negatividad y objetividad sentimental. Toda esta información puede ser utilizada en tareas de procesamiento del lenguaje natural como: • Desambiguación del Sentido de las Palabras, • Detección de la Polaridad Sentimental • Análisis Semántico y Léxico para la obtención de conceptos relevantes en una frase según el tipo de recurso implicado. Esta herramienta tiene como base el idioma inglés y se encuentra disponible como una aplicación de Windows la cual dispone de un archivo de instalación el cual despliega en el ordenador de residencia las librerías necesarias para su correcta utilización. Además de la interfaz de usuario ofrecida, esta herramienta puede ser utilizada como API (Application Programming Interface) por otras aplicaciones.