991 resultados para Sensory specific satiety


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of flavor amplification on sensory-specfic satiety was investigated. Nineteen young adults (mean age = 25 years) and 19 elderly adults (mean age = 72 years) rated the sensory properties of six foods, and were then asked to consume normal-flavored or flavor-amplified strawberry yogurt until comfortably full. The participants then re-rated the sensory properties of the six foods. There were no cl differences in the amount of yogurt consumed in either age group. Moreover flavor-fortifying the yogurt had no effect on the amount consumed in either age group. The consumption of both yogurts caused a reduction in rated pleasantness of the yogurt among young adults, but no change in the rated pleasantness of the uneaten foods. However, the elderly did not show a decrease in the rated pleasantness of any of the foods contained in the taste trays This study indicates that sensations of sensory-specific satiety were significantly reduced in the elderly, and these sensations were not induced by the addition of strawberry flavor to the yogurt.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study investigated (1) whether consumption of a nibble-size snack, as compared to a bar-size snack, leads to more sensory specific satiety (SSS) and a lower intake; and (2) whether attention to consumption, as compared to usual consumption, leads to more SSS and a lower intake. Subjects (N=59) tested two snack foods which differed in size, nibbles and bars, in two consumption conditions. In the attention condition, the instruction to chew the food well was given. In the control condition no such instruction was given. For each of the four SSS sessions ad libitum intake was measured and SSS scores were calculated. Mean intake of the nibbles was 12% lower than of the bars in the control condition, but not in the attention condition. Although non-significantly, attention to consumption tended to reduce intake of the bars but not of the nibbles. SSS scores were slightly higher for the bars than for the nibbles. Our results suggest that a smaller food size results in a lower intake. The data do not clearly support the idea that attention to consumption decreases intake. Hypothetically consumption of small foods and attentive consumption prolong the oral sensory stimulation, which results in a lower intake.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is generally thought that macronutrients stimulate intake when sensed in the mouth (e.g., sweet taste) but as food enters the GI tract its effects become inhibitory, triggering satiation processes leading to meal termination. Here we report experiments extending recent work (see [1]) showing that under some circumstances nutrients sensed in the gut produce a positive feedback effect, immediately promoting continued intake. In one experiment, rats with intragastric (IG) catheters were accustomed to consuming novel flavors in saccharin daily while receiving water infused IG (5 ml/15 min). The very first time glucose (16% w/w) was infused IG instead of water, intake accelerated within 6 mins of infusion onset and total intake increased 29% over baseline. Experiment 2 replicated this stimulatory effect with glucose infusion but not fructose nor maltodextrin. Experiment 3 showed the immediate intake stimulation is specific to the flavor accompanying the glucose infusion. Rats were accustomed to flavored saccharin being removed and replaced with the same or a different flavor. When glucose infusion accompanied the first bottle, intake from the second bottle was stimulated only when it contained the same flavor, not when the flavor switched. Thus we confirm not only that glucose sensed postingestively can have a rapid, positive feedback effect ('appetition' as opposed to 'satiation') but that it is sensory-specific, promoting continued intake of a recently encountered flavor. This sensory specific motivation may represent an additional psychobiological influence on meal size, and further, has implications for the mechanisms of learned flavor-nutrient associations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background – Satiation and satiety describe the events which lead to meal termination and the maintenance of hunger induced by physical and metabolic events following food ingestion. Fatty acids, components of dietary fat (triglyceride) may be important, if not essential components of satiation and satiety. Emerging evidence suggests fatty acid now constitutes a sixth taste modality and orally sensed fatty acids mediate unique cephalic and hormonal responses priming the body for fat digestion, and may contribute to sensory specific satiety. Once ingested, fatty acids are sensed in the gastrointestinal tract (GIT) where they cause the release of hormones, stimulate the vagus and enter the blood stream where they act a number of organs (brain, liver) to influence satiety.
Objective – To review the role of fatty acids in sensory and metabolic satiation and satiety.
Design – Literature search and review of papers from the past decade on satiety, satiation, fat taste and fatty acids.
Outcomes – The physiological significance of gustatory fat detection is still unclear, but it may signal the nutritious content of fat similar to the tastes of sweet or umami which signal the presence of carbohydrate or proteins. Like other tastants, fatty acid taste sensitivity is thought to vary in the population and differences in sensitivity may influence dietary choice and fat intake. Fatty acid taste may contribute to sensory specific satiety as foods are eaten. Animal models have observed an inverse relationship between oral fatty acid sensitivity and fat consumption, which leads to obesity. Observations that the obese have heightened preferences for, and consume more fat than lean individuals questions whether such a relationship may also be apparent in humans. At the GIT, fatty acids are sensed by enterocytes and bind to receptors, transporters or ion channels where they initiate gut-brain communication over nutrient status through the vagus and cause the release of satiety hormones which lead to meal termination. Inefficient fatty acid sensing at either or both locations is thought to accompany the aetiology of obesity.
Conclusion – Variations in sensitivity to fatty acids may alter preferences and consumption of fats or hormonal responses to fat ingestion which influence sensory-specific, metabolic and subjective satiety.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Increased energy consumption, especially increased consumption of sweet energy-dense food, is thought to be one of the main contributors to the escalating rates in overweight individuals and obesity globally. The individual's ability to detect or sense sweetness in the oral cavity is thought to be one of many factors influencing food acceptance, and therefore, taste may play an essential role in modulating food acceptance and/or energy intake. Emerging evidence now suggests that the sweet taste signaling mechanisms identified in the oral cavity also operate in the gastrointestinal system and may influence the development of satiety. Understanding the individual differences in detecting sweetness in both the oral and gastrointestinal system towards both caloric sugar and high intensity sweetener and the functional role of the sweet taste system may be important in understanding the reasons for excess energy intake. This review will summarize evidence of possible associations between the sweet taste mechanisms within the oral cavity, gastrointestinal tract and the brain systems towards both caloric sugar and high intensity sweetener and sweet taste function, which may influence satiation, satiety and, perhaps, predisposition to being overweight and obesity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A fundamental question in human memory is how the brain represents sensory-specific information during the process of retrieval. One hypothesis is that regions of sensory cortex are reactivated during retrieval of sensory-specific information (1). Here we report findings from a study in which subjects learned a set of picture and sound items and were then given a recall test during which they vividly remembered the items while imaged by using event-related functional MRI. Regions of visual and auditory cortex were activated differentially during retrieval of pictures and sounds, respectively. Furthermore, the regions activated during the recall test comprised a subset of those activated during a separate perception task in which subjects actually viewed pictures and heard sounds. Regions activated during the recall test were found to be represented more in late than in early visual and auditory cortex. Therefore, results indicate that retrieval of vivid visual and auditory information can be associated with a reactivation of some of the same sensory regions that were activated during perception of those items.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Animals are motivated to choose environmental options that can best satisfy current needs. To explain such choices, this paper introduces the MOTIVATOR (Matching Objects To Internal Values Triggers Option Revaluations) neural model. MOTIVATOR describes cognitiveemotional interactions between higher-order sensory cortices and an evaluative neuraxis composed of the hypothalamus, amygdala, and orbitofrontal cortex. Given a conditioned stimulus (CS), the model amygdala and lateral hypothalamus interact to calculate the expected current value of the subjective outcome that the CS predicts, constrained by the current state of deprivation or satiation. The amygdala relays the expected value information to orbitofrontal cells that receive inputs from anterior inferotemporal cells, and medial orbitofrontal cells that receive inputs from rhinal cortex. The activations of these orbitofrontal cells code the subjective values of objects. These values guide behavioral choices. The model basal ganglia detect errors in CS-specific predictions of the value and timing of rewards. Excitatory inputs from the pedunculopontine nucleus interact with timed inhibitory inputs from model striosomes in the ventral striatum to regulate dopamine burst and dip responses from cells in the substantia nigra pars compacta and ventral tegmental area. Learning in cortical and striatal regions is strongly modulated by dopamine. The model is used to address tasks that examine food-specific satiety, Pavlovian conditioning, reinforcer devaluation, and simultaneous visual discrimination. Model simulations successfully reproduce discharge dynamics of known cell types, including signals that predict saccadic reaction times and CS-dependent changes in systolic blood pressure.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Xath3 encodes a Xenopus neuronal-specific basic helix–loop–helix transcription factor related to the Drosophila proneural factor atonal. We show here that Xath3 acts downstream of X-ngnr-1 during neuronal differentiation in the neural plate and retina and that its expression and activity are modulated by Notch signaling. X-ngnr-1 activates Xath3 and NeuroD by different mechanisms, and the latter two genes crossactivate each other. In the ectoderm, X-ngnr-1 and Xath3 have similar activities, inducing ectopic sensory neurons. Among the sensory-specific markers tested, only those that label cranial neurons were found to be ectopically activated. By contrast, in the retina, X-ngnr-1 and Xath3 overexpression promote the development of overlapping but distinct subtypes of retinal neurons. Together, these data suggest that X-ngnr-1 and Xath3 regulate successive stages of early neuronal differentiation and that, in addition to their general proneural properties, they may contribute, in a context-dependent manner, to some aspect of neuronal identity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This dissertation addressed the issue of sustainable development at the level of individual behaviors. Environmental perceptions were obtained from people living around the biosphere reserve Chamela-Cuixmala in Jalisco, Mexico. Several environmental issues were identified by the people, such as garbage and grey water on the streets, burning plastics, and the lack of usage of recreational areas. All these issues could be addressed with a change in behavior by the villagers. Familiarization activities were conducted to gain people's trust in order to conduct a community forum. These activities included giving talks to school children and organizing workshops. Four different methodologies were generated using memetics and participation to test which would ameliorate those environmental issues identified by the people through a change in behavior. The methodologies were 1) Memes; 2) Participation and Memes; 3) Participation; 4) Neither Participation nor Memes. A meme is an idea expressed within a linguistic structure or architecture that provides it with self-disseminating and self-protecting characteristics within and among the minds of individuals congruent with their values, beliefs and filters. Four villages were chosen as the treatments, and one as the control, for a total of five experimental villages. A different behavior was addressed in each treatment village (garbage, grey-water, burning plastics, recreation.) A nonequivalent control-group design was established. A pretest was conducted in all five villages; the methodologies were tested in the four treatment villages; a posttest was conducted on the five villages. The pretest and posttest consisted in measuring sensory specific indicators which are manifestations of behavior that can either be seen, smelled, touched, heard or tasted. Statistically significant differences in behavior from the control were found for two of the methodologies 1) Memes (p=0.0403) and 2) Participation and Memes (p=0.0064). For the methodologies of 3) Participation alone and 4) Neither, the differences were not significant (p=0.8827, p=0.5627 respectively). When using memes, people's behavior improved when compared to the control. Participation alone did not generate a significant difference. Participation aided in the generation of the memes. Memetics is a tool that can be used to establish a linkage between human behavior and ecological health.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

MRGX2, a G-protein-coupled receptor, is specifically expressed in the sensory neurons of the human peripheral nervous system and involved in nociception. Here, we studied DNA polymorphism patterns and evolution of the MRGX2 gene in world-wide human populations and the representative nonhuman primate species. Our results demonstrated that MRGX2 had undergone adaptive changes in the path of human evolution, which were likely caused by Darwinian positive selection. The patterns of DNA sequence polymorphisms in human populations showed an excess of derived substitutions, which against the expectation of neutral evolution, implying that the adaptive evolution of MRGX2 in humans was a relatively recent event. The reconstructed secondary structure of the human MRGX2 revealed that three of the four human-specific amino acid substitutions were located in the extra-cellular domains. Such critical substitutions may alter the interactions between MRGX2 protein and its ligand, thus, potentially led to adaptive changes of the pain-perception-related nervous system during human evolution. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Satiety and other core physiological functions are modulated by sensory signals arising from the surface of the gut. Luminal nutrients and bacteria stimulate epithelial biosensors called enteroendocrine cells. Despite being electrically excitable, enteroendocrine cells are generally thought to communicate indirectly with nerves through hormone secretion and not through direct cell-nerve contact. However, we recently uncovered in intestinal enteroendocrine cells a cytoplasmic process that we named neuropod. Here, we determined that neuropods provide a direct connection between enteroendocrine cells and neurons innervating the small intestine and colon. Using cell-specific transgenic mice to study neural circuits, we found that enteroendocrine cells have the necessary elements for neurotransmission, including expression of genes that encode pre-, post-, and transsynaptic proteins. This neuroepithelial circuit was reconstituted in vitro by coculturing single enteroendocrine cells with sensory neurons. We used a monosynaptic rabies virus to define the circuit's functional connectivity in vivo and determined that delivery of this neurotropic virus into the colon lumen resulted in the infection of mucosal nerves through enteroendocrine cells. This neuroepithelial circuit can serve as both a sensory conduit for food and gut microbes to interact with the nervous system and a portal for viruses to enter the enteric and central nervous systems.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The halobacterial phototaxis receptors sensory rhodopsin I and II (SRI, SRII) enable the bacteria to seek optimal light conditions for ion pumping by bacteriorhodopsin and/or halorhodopsin. The incoming signal is transferred across the plasma membrane by means of receptor-specific transducer proteins that bind tightly to their corresponding photoreceptors. To investigate the receptor/transducer interaction, advantage is taken of the observation that both SRI and SRII can function as proton pumps. SRI from Halobacterium salinarum, which triggers the positive phototaxis, the photophobic receptor SRII from Natronobacterium pharaonis (pSRII), as well as the mutant pSRII-F86D were expressed in Xenopus oocytes. Voltage-clamp studies confirm that SRI and pSRII function as light-driven, outwardly directed proton pumps with a much stronger voltage dependence than the ion pumps bacteriorhodopsin and halorhodopsin. Coexpression of SRI and pSRII-F86D with their corresponding transducers suppresses the proton transport, revealing a tight binding and specific interaction of the two proteins. These latter results may be exploited to further analyze the binding interaction of the photoreceptors with their downstream effectors.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The tetroclotoxin-resistant voltage-gated sodium channel (VGSC) Na(v)1.8 is expressed predominantly by damage-sensing primary afferent nerves and is important for the development and maintenance of persistent pain states. Here we demonstrate that mu O-conotoxin MrVIB from Conus marmoreus displays substantial selectivity for Na(v)1.8 and inhibits pain behavior in models of persistent pain. In rat sensory neurons, submicromolar concentrations of MrVIB blocked tetroclotoxin-resistant current characteristic of Na(v)1.8 but not Na(v)1.9 or tetroclotoxin-sensitive VGSC currents. MrVIB blocked human Nav1.8 expressed in Xenopus oocytes with selectivity at least 10-fold greater than other VGSCs. In neuropathic and chronic inflammatory pain models, allodynia and hyperalgesia were both reduced by intrathecal infusion of MrVIB (0.03-3 nmol), whereas motor side effects occurred only at 30-fold higher doses. In contrast, the nonselective VGSC blocker lignocaine displayed no selectivity for allodynia and hyperalgesia versus motor side effects. The actions of MrVIB reveal that VGSC antagonists displaying selectivity toward Na(v)1.8 can alleviate chronic pain behavior with a greater therapeutic index than nonselective antagonists.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The relationship between neuronal acuity and behavioral performance was assessed in the barn owl (Tyto alba), a nocturnal raptor renowned for its ability to localize sounds and for the topographic representation of auditory space found in the midbrain. We measured discrimination of sound-source separation using a newly developed procedure involving the habituation and recovery of the pupillary dilation response. The smallest discriminable change of source location was found to be about two times finer in azimuth than in elevation. Recordings from neurons in its midbrain space map revealed that their spatial tuning, like the spatial discrimination behavior, was also better in azimuth than in elevation by a factor of about two. Because the PDR behavioral assay is mediated by the same circuitry whether discrimination is assessed in azimuth or in elevation, this difference in vertical and horizontal acuity is likely to reflect a true difference in sensory resolution, without additional confounding effects of differences in motor performance in the two dimensions. Our results, therefore, are consistent with the hypothesis that the acuity of the midbrain space map determines auditory spatial discrimination.