725 resultados para Sensor output
Resumo:
A visible/near-infrared optical sensor based on an ITO/SiOx/n-Si structure with internal gain is presented. This surface-barrier structure was fabricated by a low-temperature processing technique. The interface properties and carder transport were investigated from dark current-voltage and capacitance-voltage characteristics. Examination of the multiplication properties was performed under different light excitation and reverse bias conditions. The spectral and pulse response characteristics are analysed. The current amplification mechanism is interpreted by the control of electron current by the space charge of photogenerated holes near the SiOx/Si interface. The optical sensor output characteristics and some possible device applications are presented.
Resumo:
A pi'n/pin a-SiC:H voltage and optical bias controlled device is presented and its behavior as image and color sensor, optical amplifier and demux device is discussed. The design and the light source properties are correlated with the sensor output characteristics. Different readout techniques are used. When a low power monochromatic scanner readout the generated carriers the transducer recognizes a color pattern projected on it acting as a direct color and image sensor. Scan speeds up to 10(4) lines per second are achieved without degradation in the resolution. If the photocurrent generated by different monochromatic pulsed channels is readout directly, the information is demultiplexed. Results show that it is possible to decode the information from three simultaneous color channels without bit errors at bit rates per channel higher than 4000 bps. Finally, when triggered by light of appropriated wavelength, it can amplify or suppress the generated photocurrent working as an optical amplifier (C) 2009 Published by Elsevier Ltd.
Resumo:
The operational details of the apparent electrical conductivity (ECa) sensor manufactured by Veris Technologies have been extensively documented in literature reports, but the geographical distribution of these research studies indicate a strong regional concentration in the US Mid-west and Southern states. The agricultural lands of these states diverge significantly to the soil conditions and water regime of irrigated land in the US South-western states such as Arizona where there is no previous research reports of the use of this particular sensor. The objectives of the present study were to analyze the performance of this sensor under the conditions of typical soils in irrigated farms of Central Arizona. We tested under static conditions the performance of the sensor on three soils of contrasting texture. Observations were collected as time series data as soil moisture changed from saturation to permanent wilting point. Observations were repeated at the hours of lowest and highest temperatures. In addition, this study included soil penetration resistance and salinity determinations. Preliminary results indicate that soil temperature of the upper layer caused the most dynamic change in the sensor output. The ECa curves of the three soil textures tested had well defined distinctive characteristics. Final multivariate analysis is pending.
Resumo:
A novel device for the detection and characterisation of static magnetic fields is presented. It consists of a femtosecond laser inscribed fibre Bragg grating (FBG) that is incorporated into an optical fibre with a femtosecond laser micromachined slot. The symmetry of the fibre is broken by the micro-slot, producing non-uniform strain across the fibre cross section. The sensing region is coated with Terfenol-D making the device sensitive to static magnetic fields, whereas the symmetry breaking results in a vectorial sensor for the detection of magnetic fields as low as 0.046 mT with a resolution of ±0.3mT in transmission and ±0.7mT in reflection. The sensor output is directly wavelength encoded from the FBG filtering, leading to simple demodulation through the monitoring of wavelength shifts that result as the fibre structure changes shape in response to the external magnetic field. The use of a femtosecond laser to both inscribe the FBG and micro-machine the slot in a single stage, prior to coating the device, significantly simplifies the sensor fabrication.
Resumo:
A novel device for the detection and characterisation of static magnetic fields is presented. It consists of a femtosecond laser inscribed fibre Bragg grating (FBG) that is incorporated into an optical fibre with a femtosecond laser micromachined slot. The symmetry of the fibre is broken by the micro-slot, producing non-uniform strain across the fibre cross section. The sensing region is coated with Terfenol-D making the device sensitive to static magnetic fields, whereas the symmetry breaking results in a vectorial sensor for the detection of magnetic fields as low as 0.046 mT with a resolution of ±0.3mT in transmission and ±0.7mT in reflection. The sensor output is directly wavelength encoded from the FBG filtering, leading to simple demodulation through the monitoring of wavelength shifts that result as the fibre structure changes shape in response to the external magnetic field. The use of a femtosecond laser to both inscribe the FBG and micro-machine the slot in a single stage, prior to coating the device, significantly simplifies the sensor fabrication.
Resumo:
Large area hydrogenated amorphous silicon single and stacked p-i-n structures with low conductivity doped layers are proposed as monochrome and color image sensors. The layers of the structures are based on amorphous silicon alloys (a-Si(x)C(1-x):H). The current-voltage characteristics and the spectral sensitivity under different bias conditions are analyzed. The output characteristics are evaluated under different read-out voltages and scanner wavelengths. To extract information on image shape, intensity and color, a modulated light beam scans the sensor active area at three appropriate bias voltages and the photoresponse in each scanning position ("sub-pixel") is recorded. The investigation of the sensor output under different scanner wavelengths and varying electrical bias reveals that the response can be tuned, thus enabling color separation. The operation of the sensor is exemplified and supported by a numerical simulation.
Resumo:
An optimized ZnO:Al/a-pin SixCl1-x:H/Al configuration for the laser scanned photodiode (LSP) imaging detector is proposed. The LSP utilizes light induced depletion layers as detector and a laser beam for readout. The effect of the sensing element structure, cell configuration and light source flux are investigated and correlated with the sensor output characteristics. Experimental data reveal that the large optical gap and the low conductivity of the doped a-SixC1-x:H layers are responsible by an induced inversion layer at the illuminated interfaces which blocks the carrier collection. These insulator-like layers act as MIS gates preventing image smearing. The physical background of the LSP is discussed.
Resumo:
An optimized ZnO:Al/a-pin SixC1-x:H/Al configuration for the laser scanned photodiode (LSP) imaging detector is proposed and the read-out parameters improved. The effect of the sensing element structure, cell configuration and light source flux are investigated and correlated with the sensor output characteristics. Data reveals that for sensors with wide band gap doped layers an increase on the image signal optimized to the blue is achieved with a dynamic range of two orders of magnitude, a responsivity of 6 mA W-1 and a sensitivity of 17 muW cm(-2) at 530 nm. The main output characteristics such as image responsivity, resolution, linearity and dynamic range were analyzed under reverse, forward and short circuit modes. The results show that the sensor performance can be optimized in short circuit mode. A trade-off between the scan time and the required resolution is needed since the spot size limits the resolution due to the cross-talk between dark and illuminated regions leading to blurring effects.
Resumo:
Amorphous glass/ZnO-Al/p(a-Si:H)/i(a-Si:H)/n(a-Si1-xCx:H)/Al imagers with different n-layer resistivities were produced by plasma enhanced chemical vapour deposition technique (PE-CVD). An image is projected onto the sensing element and leads to spatially confined depletion regions that can be readout by scanning the photodiode with a low-power modulated laser beam. The essence of the scheme is the analog readout, and the absence of semiconductor arrays or electrode potential manipulations to transfer the information coming from the transducer. The influence of the intensity of the optical image projected onto the sensor surface is correlated with the sensor output characteristics (sensitivity, linearity blooming, resolution and signal-to-noise ratio) are analysed for different material compositions (0.5 < x < 1). The results show that the responsivity and the spatial resolution are limited by the conductivity of the doped layers. An enhancement of one order of magnitude in the image intensity signal and on the spatial resolution are achieved at 0.2 mW cm(-2) light flux by decreasing the n-layer conductivity by the same amount. A physical model supported by electrical simulation gives insight into the image-sensing technique used.
Resumo:
In this review paper different designs based on stacked p-i'-n-p-i-n heterojunctions are presented and compared with the single p-i-n sensing structures. The imagers utilise self-field induced depletion layers for light detection and a modulated laser beam for sequential readout. The effect of the sensing element structure, cell configurations (single or tandem), and light source properties (intensity and wavelength) are correlated with the sensor output characteristics (light-to-dark sensivity, spatial resolution, linearity and S/N ratio). The readout frequency is optimized showing that scans speeds up to 104 lines per second can be achieved without degradation in the resolution. Multilayered p-i'-n-p-i-n heterostructures can also be used as wavelength-division multiplexing /demultiplexing devices in the visible range. Here the sensor element faces the modulated light from different input colour channels, each one with a specific wavelength and bit rate. By reading out the photocurrent at appropriated applied bias, the information is multiplexed or demultiplexed and can be transmitted or recovered again. Electrical models are present to support the sensing methodologies.
Resumo:
Dissertação de mestrado integrado em Engenharia Eletrónica Industrial e Computadores
Resumo:
This master dissertation presents the study and implementation of inteligent algorithms to monitor the measurement of sensors involved in natural gas custody transfer processes. To create these algoritmhs Artificial Neural Networks are investigated because they have some particular properties, such as: learning, adaptation, prediction. A neural predictor is developed to reproduce the sensor output dynamic behavior, in such a way that its output is compared to the real sensor output. A recurrent neural network is used for this purpose, because of its ability to deal with dynamic information. The real sensor output and the estimated predictor output work as the basis for the creation of possible sensor fault detection and diagnosis strategies. Two competitive neural network architectures are investigated and their capabilities are used to classify different kinds of faults. The prediction algorithm and the fault detection classification strategies, as well as the obtained results, are presented
Resumo:
This master dissertation presents the study and implementation of inteligent algorithms to monitor the measurement of sensors involved in natural gas custody transfer processes. To create these algoritmhs Artificial Neural Networks are investigated because they have some particular properties, such as: learning, adaptation, prediction. A neural predictor is developed to reproduce the sensor output dynamic behavior, in such a way that its output is compared to the real sensor output. A recurrent neural network is used for this purpose, because of its ability to deal with dynamic information. The real sensor output and the estimated predictor output work as the basis for the creation of possible sensor fault detection and diagnosis strategies. Two competitive neural network architectures are investigated and their capabilities are used to classify different kinds of faults. The prediction algorithm and the fault detection classification strategies, as well as the obtained results, are presented
Resumo:
Simulators are indispensable tools to support the development and testing of cooperating objects such as wireless sensor networks (WSN). However, it is often not possible to compare the results of different simulation tools. Thus, the goal of this paper is the specification of a generic simulation platform for cooperating objects. We propose a platform that consists of a set of simulators that together fulfill desired simulator properties. We show that to achieve comparable results the use of a common specification language for the software-under-test is not feasible. Instead, we argue that using common input formats for the simulated environment and common output formats for the results is useful. This again motivates that a simulation tool consisting of a set of existing simulators that are able to use common scenario-input and can produce common output which will bring us a step closer to the vision of achieving comparable simulation results.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Electrotécnica e de Computadores