942 resultados para Sensing devices


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We demonstrate that etched fiber Bragg gratings (eFBGs) coated with single walled carbon nanotubes (SWNTs) and graphene oxide (GO) are highly sensitive and accurate biochemical sensors. Here, for detecting protein concanavalin A (Con A), mannose-functionalized poly(propyl ether imine) (PETIM) dendrimers (DMs) have been attached to the SWNTs (or GO) coated on the surface modified eFBG. The dendrimers act as multivalent ligands, having specificity to detect lectin Con A. The specificity of the sensor is shown by a much weaker response (factor of similar to 2500 for the SWNT and similar to 2000 for the GO coated eFBG) to detect non specific lectin peanut agglutinin. DM molecules functionalized GO coated eFBG sensors showed excellent specificity to Con A even in the presence of excess amount of an interfering protein bovine serum albumin. The shift in the Bragg wavelength (Delta lambda(B)) with respect to the lambda(B) values of SWNT (or GO)-DM coated eFBG for various concentrations of lectin follows Langmuir type adsorption isotherm, giving an affinity constant of similar to 4 x 10(7) M-1 for SWNTs coated eFBG and similar to 3 x 10(8) M-1 for the GO coated eFBG. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Physiological parameters measured by an embedded body sensor system were demonstrated to respond to changes of the air temperature in an office environment. The thermal parameters were monitored with the use of a wireless sensor system that made possible to turn any existing room into a field laboratory. Two human subjects were monitored over daily activities and at various steady-state thermal conditions when the air temperature of the room was altered from 22-23°C to 25-28°C. The subjects indicated their thermal feeling on questionnaires. The measured skin temperature was distributed close to the calculated mean skin temperature corresponding to the given activity level. The variation of Galvanic Skin Response (GSR) reflected the evaporative heat loss through the body surfaces and indicated whether sweating occurred on the subjects. Further investigations are needed to fully evaluate the influence of thermal and other factors on the output given by the investigated body sensor system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

pt. 1. Basic studies of rotating stall flow mechanisms.--pt. 2. Investigation of flow-instability sensing devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reported a three-dimensional microfluidic channel structure, which was fabricated by Yb:YAG 1026?nm femtosecond laser irradiation on a single-crystalline diamond substrate. The femtosecond laser irradiation energy level was optimized at 100?kHz repetition rate with a sub-500 femtosecond pulse duration. The morphology and topography of the microfluidic channel were characterized by a scanning electron microscope and an atomic force microscope. Raman spectroscopy indicated that the irradiated area was covered by graphitic materials. By comparing the cross-sectional profiles before/after removing the graphitic materials, it could be deduced that the microfluidic channel has an average depth of ~410?nm with periodical ripples perpendicular to the irradiation direction. This work proves the feasibility of using ultra-fast laser inscription technology to fabricate microfluidic channels on biocompatible diamond substrates, which offers a great potential for biomedical sensing applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reported a three-dimensional microfluidic channel structure, which was fabricated by Yb:YAG 1026?nm femtosecond laser irradiation on a single-crystalline diamond substrate. The femtosecond laser irradiation energy level was optimized at 100?kHz repetition rate with a sub-500 femtosecond pulse duration. The morphology and topography of the microfluidic channel were characterized by a scanning electron microscope and an atomic force microscope. Raman spectroscopy indicated that the irradiated area was covered by graphitic materials. By comparing the cross-sectional profiles before/after removing the graphitic materials, it could be deduced that the microfluidic channel has an average depth of ~410?nm with periodical ripples perpendicular to the irradiation direction. This work proves the feasibility of using ultra-fast laser inscription technology to fabricate microfluidic channels on biocompatible diamond substrates, which offers a great potential for biomedical sensing applications.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The work presented in this thesis described the development of low-cost sensing and separation devices with electrochemical detections for health applications. This research employs macro, micro and nano technology. The first sensing device developed was a tonerbased micro-device. The initial development of microfluidic devices was based on glass or quartz devices that are often expensive to fabricate; however, the introduction of new types of materials, such as plastics, offered a new way for fast prototyping and the development of disposable devices. One such microfluidic device is based on the lamination of laser-printed polyester films using a computer, printer and laminator. The resulting toner-based microchips demonstrated a potential viability for chemical assays, coupled with several detection methods, particularly Chip-Electrophoresis-Chemiluminescence (CE-CL) detection which has never been reported in the literature. Following on from the toner-based microchip, a three-electrode micro-configuration was developed on acetate substrate. This is the first time that a micro-electrode configuration made from gold; silver and platinum have been fabricated onto acetate by means of patterning and deposition techniques using the central fabrication facilities in Tyndall National Institute. These electrodes have been designed to facilitate the integration of a 3- electrode configuration as part of the fabrication process. Since the electrodes are on acetate the dicing step can automatically be eliminated. The stability of these sensors has been investigated using electrochemical techniques with excellent outcomes. Following on from the generalised testing of the electrodes these sensors were then coupled with capillary electrophoresis. The final sensing devices were on a macro scale and involved the modifications of screenprinted electrodes. Screen-printed electrodes (SPE) are generally seen to be far less sensitive than the more expensive electrodes including the gold, boron-doped diamond and glassy carbon electrodes. To enhance the sensitivity of these electrodes they were treated with metal nano-particles, gold and palladium. Following on from this, another modification was introduced. The carbonaceous material carbon monolith was drop-cast onto the SPE and then the metal nano-particles were electrodeposited onto the monolith material

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The search for new multipoint, multidirectional strain sensing devices has received a new impetus since the discovery of carbon nanotubes. The excellent electrical, mechanical, and electromechanical properties of carbon nanotubes make them ideal candidates as primary materials in the design of this new generation of sensing devices. Carbon nanotube based strain sensors proposed so far include those based on individual carbon nanotubes for integration in nano or micro elecromechanical systems (NEMS/MEMS) [1], or carbon nanotube films consisting of spatially connected carbon nanotubes [2], carbon nanotube - polymer composites [3,4] for macroscale strain sensing. Carbon nanotube films have good strain sensing response and offer the possibility of multidirectional and multipoint strain sensing, but have poor performance due to weak interaction between carbon nanotubes. In addition, the carbon nanotube film sensor is extremely fragile and difficult to handle and install. We report here the static and dynamic strain sensing characteristics as well as temperature effects of a sandwich carbon nanotube - polymer sensor fabricated by infiltrating carbon nanotube films with polymer.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Carbon nanotubes (CNTs) have excellent electrical, mechanical and electromechanical properties. When CNTs are incorporated into polymers, electrically conductive composites with high electrical conductivity at very low CNT content (often below 1% wt CNT) result. Due to the change in electrical properties under mechanical load, carbon nanotube/polymer composites have attracted significant research interest especially due to their potential for application in in-situ monitoring of stress distribution and active control of strain sensing in composite structures or as strain sensors. To sucessfully develop novel devices for such applications, some of the major challenges that need to be overcome include; in-depth understanding of structure-electrical conductivity relationships, response of the composites under changing environmental conditions and piezoresistivity of different types of carbon nanotube/polymer sensing devices. In this thesis, direct current (DC) and alternating current (AC) conductivity of CNT-epoxy composites was investigated. Details of microstructure obtained by scanning electron microscopy were used to link observed electrical properties with structure using equivalent circuit modeling. The role of polymer coatings on macro and micro level electrical conductivity was investigated using atomic force microscopy. Thermal analysis and Raman spectroscopy were used to evaluate the heat flow and deformation of carbon nanotubes embedded in the epoxy, respectively, and related to temperature induced resistivity changes. A comparative assessment of piezoresistivity was conducted using randomly mixed carbon nanotube/epoxy composites, and new concept epoxy- and polyurethane-coated carbon nanotube films. The results indicate that equivalent circuit modelling is a reliable technique for estimating values of the resistance and capacitive components in linear, low aspect ratio-epoxy composites. Using this approach, the dominant role of tunneling resistance in determining the electrical conductivity was confirmed, a result further verified using conductive-atomic force microscopy analysis. Randomly mixed CNT-epoxy composites were found to be highly sensitive to mechanical strain and temperature variation compared to polymer-coated CNT films. In the vicinity of the glass transition temperature, the CNT-epoxy composites exhibited pronounced resistivity peaks. Thermal and Raman spectroscopy analyses indicated that this phenomenon can be attributed to physical aging of the epoxy matrix phase and structural rearrangement of the conductive network induced by matrix expansion. The resistivity of polymercoated CNT composites was mainly dominated by the intrinsic resistivity of CNTs and the CNT junctions, and their linear, weakly temperature sensitive response can be described by a modified Luttinger liquid model. Piezoresistivity of the polymer coated sensors was dominated by break up of the conducting carbon nanotube network and the consequent degradation of nanotube-nanotube contacts while that of the randomly mixed CNT-epoxy composites was determined by tunnelling resistance between neighbouring CNTs. This thesis has demonstrated that it is possible to use microstructure information to develop equivalent circuit models that are capable of representing the electrical conductivity of CNT/epoxy composites accurately. New designs of carbon nanotube based sensing devices, utilising carbon nanotube films as the key functional element, can be used to overcome the high temperature sensitivity of randomly mixed CNT/polymer composites without compromising on desired high strain sensitivity. This concept can be extended to develop large area intelligent CNT based coatings and targeted weak-point specific strain sensors for use in structural health monitoring.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Lee M.H. and Nicholls H.R., Tactile Sensing for Mechatronics: A State of the Art Survey, Mechatronics, 9, Jan 1999, pp1-31.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Embedded wireless sensor network (WSN) systems have been developed and used in a wide variety of applications such as local automatic environmental monitoring; medical applications analysing aspects of fitness and health energy metering and management in the built environment as well as traffic pattern analysis and control applications. While the purpose and functions of embedded wireless sensor networks have a myriad of applications and possibilities in the future, a particular implementation of these ambient sensors is in the area of wearable electronics incorporated into body area networks and everyday garments. Some of these systems will incorporate inertial sensing devices and other physical and physiological sensors with a particular focus on the application areas of athlete performance monitoring and e-health. Some of the important physical requirements for wearable antennas are that they are light-weight, small and robust and should also use materials that are compatible with a standard manufacturing process such as flexible polyimide or fr4 material where low cost consumer market oriented products are being produced. The substrate material is required to be low loss and flexible and often necessitates the use of thin dielectric and metallization layers. This paper describes the development of such a wearable, flexible antenna system for ISM band wearable wireless sensor networks. The material selected for the development of the wearable system in question is DE104i characterized by a dielectric constant of 3.8 and a loss tangent of 0.02. The antenna feed line is a 50 Ohm microstrip topology suitable for use with standard, high-performance and low-cost SMA-type RF connector technologies, widely used for these types of applications. The desired centre frequency is aimed at the 2.4GHz ISM band to be compatible with IEEE 802.15.4 Zigbee communication protocols and the Bluetooth standard which operate in this band.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A novel series of polymerisable squaramides has been synthesised in high yields using simple chemical reactions, and evaluated in the binding of anionic species. These vinyl monomers can be used as functional building blocks in co-polymerisations with a plethora of co-monomers or cross-linkers, grace to their compatibility with free-radical polymerisation reactions. Aromatic substituted squaramides were found to be the strongest receptors, while binding of certain anions was accompanied by a strong colour change, attributed to the de-protonation of the squaramide. The best performing squaramide monomers were incorporated in molecularly imprinted polymers (MIPs) targeting a model anion and their capacities and selectivity were evaluated by rebinding experiments. Polymers prepared using the new squaramide monomers were compared to urea based co-polymers, and were found to contain up to 80% of the theoretical maximum number of binding sites, an exceptionally high value compared to previous reports. Strong polymer colour changes were observed upon rebinding of certain anions, equivalent to those witnessed in solution, paving the way for application of such materials in anion sensing devices.



Graphical abstract: Polymerisable squaramide receptors for anion binding and sensing

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The concern related to the environmental degradation and to the exhaustion of natural resources has induced the research on biodegradable materials obtained from renewable sources, which involves fundamental properties and general application. In this context, we have fabricated thin films of lignins, which were extracted from sugar cane bagasse via modified organosolv process using ethanol as organic solvent. The films were made using the vacuum thermal evaporation technique (PVD, physical vapor deposition) grown up to 120 nm. The main objective was to explore basic properties such as electrical and surface morphology and the sensing performance of these lignins as transducers. The PVD film growth was monitored via ultraviolet-visible (UV-vis) absorption spectroscopy and quartz crystal microbalance, revealing a linear relationship between absorbance and film thickness. The 120 nm lignin PVD film morphology presented small aggregates spread all over the film surface on the nanometer scale (atomic force microscopy, AFM) and homogeneous on the micrometer scale (optical microscopy). The PVD films were deposited onto Au interdigitated electrode (IDE) for both electrical characterization and sensing experiments. In the case of electrical characterization, current versus voltage (I vs V) dc measurements were carried out for the Au IDE coated with 120 nm lignin PVD film, leading to a conductivity of 3.6 x 10(-10) S/m. Using impedance spectroscopy, also for the Au IDE coated with the 120 nm lignin PVD film, dielectric constant of 8.0, tan delta of 3.9 x 10(-3)) and conductivity of 1.75 x 10(-9) S/m were calculated at 1 kHz. As a proof-of-principle, the application of these lignins as transducers in sensing devices was monitored by both impedance spectroscopy (capacitance vs frequency) and I versus time dc measurements toward aniline vapor (saturated atmosphere). The electrical responses showed that the sensing units are sensible to aniline vapor with the process being reversible. AFM images conducted directly onto the sensing units (Au IDE coated with 120 nm lignin PVD film) before and after the sensing experiments showed a decrease in the PVD film roughness from 5.8 to 3.2 nm after exposing to aniline.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Optical remote sensing techniques have obvious advantages for monitoring gas and aerosol emissions, since they enable the operation over large distances, far from hostile environments, and fast processing of the measured signal. In this study two remote sensing devices, namely a Lidar (Light Detection and Ranging) for monitoring the vertical profile of backscattered light intensity, and a Sodar (Acoustic Radar, Sound Detection and Ranging) for monitoring the vertical profile of the wind vector were operated during specific periods. The acquired data were processed and compared with data of air quality obtained from ground level monitoring stations, in order to verify the possibility of using the remote sensing techniques to monitor industrial emissions. The campaigns were carried out in the area of the Environmental Research Center (Cepema) of the University of São Paulo, in the city of Cubatão, Brazil, a large industrial site, where numerous different industries are located, including an oil refinery, a steel plant, as well as fertilizer, cement and chemical/petrochemical plants. The local environmental problems caused by the industrial activities are aggravated by the climate and topography of the site, unfavorable to pollutant dispersion. Results of a campaign are presented for a 24- hour period, showing data of a Lidar, an air quality monitoring station and a Sodar. © 2011 SPIE.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In future, the so called “sensing enterprise”, as part of the Future Internet, will play a crucial role in the success or the failure of an enterprise. We present our vision of an enterprise interacting with the physical world based on a retail scenario. One of the main challenges is the interoperability not only between the enterprise IT systems themselves, but also between these systems and the sensing devices. We will argue that semantically enriched service descriptions, the so called linked services will ease interoperability between two or more enterprises IT systems, and between enterprise systems and the physical environment.