874 resultados para Sense and anti-sense gene cold tolerance
Resumo:
低温是限制植物分布和生物产量的一个重要环境因子。低温的危害也是农业生产上经常遭受的主要自然灾害之一。改良作物的抗寒性是植物科学研究的一个重要课题。植物基因工程的兴起为此目的提供了有力的手段。 大量的研究证明,低温对植物的伤害,首先是使生物膜发生相变和相分离。因此,保持低温下生物膜功能性的液晶态是抗寒的重要机制。研究表明,生物膜这种具流动性的功能态的保持,是与其组成上的膜脂脂肪酸的不饱和度成正相关的。 已有几个关于通过提高膜脂脂肪酸不饱和度的基因操作而增加植物抗寒性的报道。在众多的植物脂肪酸去饱和酶中,硬脂酰ACP去饱和酶(SAD)是最为关键的酶之一。它催化脂肪酸的第一步去饱和反应:18:0-18:l¨。多不饱和脂肪酸是在1 8:1 中由其他去饱和酶再加入双键而生成的。因此,SAD的活性水平是决定植物膜脂不池和度的一个关键因素。 本研究以酸酚法提取的菠菜总RNA为材料,采用反转录一PCR的方法,克隆得到SAD基因,经定向缺失法获得一套该基因的缺失突变体后,用DNA 自动测序仪和双脱氧链终止法测序。获得的SAD基因序列与Nishlda(1992)等发表的菠菜sADcDNA核苷酸序列比较。两者的编码SAD的ORF都为ll97bp,核苷酸差异仅为8bp。但令人惊奇的是我们克隆到的基因,其5‘端上游还存在-个小的ORF,长30bp.编码10个氨基酸。其他报道的SAD基因中都没有这个ORF。 将克隆到的SAD基因构建成两个植物双元表达载体:正义的pB112-13和反义的pB112-6。用叶盘法转化烟草。DNA点杂交和Southern杂交筛选出转基因植株。抗寒性测定表明:当植株置于6'C40小时,转基因植株和对照的相对电导率比较一致,无明显改变;而在88小时,pB121-6转化植株和对照的相对电导率明显升高,以pB1121-6植株升高更多,但pB1121-13转化植株的相对电导率始终保持在较低水平。短暂冰冻处理(-20'C,4O分钟)后置室温下4天,pBl121-6转化烟草总叶绿素含量损失最多,对照次之,而pB1121-13转化烟草中多数植株总叶绿素损伤量都低于其他两种烟草。从这两个抗寒性测定实验,可判定pBl l 2 l—I 3烟株最抗寒,对照次之,而pB1121-6烟株最不抗寒。 由于pB1121-13是增强转基因烟草中SAD活性,而pB1121-6是削弱SAD基因的表达,因此.本研究首次证明通过SAD的基因工程可以改变植物的抗寒性。
Resumo:
A new cold-inducible genetic construct was cloned using a chloroplast-specific omega-3-fatty acid desaturase gene (FAD7) under the control of a cold-inducible promoter (cor15a) from Arabidopsis thaliana. RT-PCR confirmed a marked increase in FAD7 expression, in young Nicotiana tabacum (cv. Havana) plants harboring cor15a-FAD7, after a short-term exposure to cold. When young, cold-induced tobacco seedlings were exposed to low-temperature (0.5, 2 or 3.5 degrees C) for up to 44 days, survival within independent cor15a-FAD7 transgenic lines (40.2-96%) was far superior to the wild type (6.7-10.2%). In addition, the major trienoic fatty acid species remained stable in cold-induced cor15a-FAD7 N. tabacum plants under prolonged cold storage while the levels of hexadecatrienoic acid (16:3) and octadecatrienoic acid (18:3) declined in wild type plants under the same conditions (79 and 20.7% respectively). Electron microscopy showed that chloroplast membrane ultrastructure in cor15a-FAD7 transgenic plants was unaffected by prolonged exposure to cold temperatures. In contrast, wild type plants experienced a loss of granal stacking and disorganization of the thylakoid membrane under the same conditions. Changes in membrane integrity coincided with a precipitous decline in leaf chlorophyll concentration and low survival rates in wild type plants. Cold-induced double transgenic N. alata (cv. Domino Mix) plants, harboring both the cor15a-FAD7 cold-tolerance gene and a cor15a-IPT dark-tolerance gene, exhibited dramatically higher survival rates (89-90%) than wild type plants (2%) under prolonged cold storage under dark conditions (2 degrees C for 50 days).
Resumo:
In adult mammals, severe hypothermia leads to respiratory and cardiac arrest, followed by death. Neonatal rats and hamsters can survive much lower body temperatures and, upon artificial rewarming, spontaneously recover from respiratory arrest (autoresuscitate), typically suffering no long-term effects. To determine developmental and species differences in cold tolerance (defined here as the temperature of respiratory arrest) and its relation to the ability to autoresuscitate, we cooled neonatal and juvenile Sprague-Dawley rats and Syrian hamsters until respiration ceased, followed by rewarming. Ventilation and heartbeat were continuously monitored. In rats, cold tolerance did not change throughout development, however the ability to autoresuscitate from hypothermic respiratory arrest did (lost between postnatal days, P, 14 and 20), suggesting that the mechanisms for maintaining breathing at low temperatures was retained throughout development while those initiating breathing on rewarming were altered. Hamsters, however, showed increased cold tolerance until P26-28 and were able to autoresuscitate into adulthood (provided the heart kept beating throughout respiratory arrest). Also, hamsters were more cold tolerant than rats. We saw no evidence of gasping to initiate breathing following respiratory arrest, contributing to the hypothesis that hypothermic respiratory arrest does not lead to anoxia. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Antisense-mediated gene silencing (ASGS) and posttranscriptional gene silencing (PTGS) with sense transgenes markedly reduce the steady-state mRNA levels of endogenous genes similar in transcribed sequence. RNase protection assays established that silencing in tobacco plants transformed with plant-defense-related class I sense and antisense chitinase (CHN) transgenes is at the posttranscriptional level. Infection of tobacco plants with cucumber mosaic virus strain FN and a necrotizing strain of potato virus Y, but not with potato virus X, effectively suppressed PTGS and ASGS of both the transgenes and homologous endogenes. This suggests that ASGS and PTGS share components associated with initiation and maintenance of the silent state. Small, ca. 25-nt RNAs (smRNA) of both polarities were associated with PTGS and ASGS in CHN transformants as reported for PTGS in other transgenic plants and for RNA interference in Drosophila. Similar results were obtained with an antisense class I β-1,3-glucanase transformant showing that viral suppression and smRNAs are a more general feature of ASGS. Several current models hold that diverse signals lead to production of double-stranded RNAs, which are processed to smRNAs that then trigger PTGS. Our results provide direct evidence for mechanistic links between ASGS and PTGS and suggest that ASGS could join a common PTGS pathway at the double-stranded RNA step.
Resumo:
Post-transcriptional silencing of plant genes using anti-sense or co-suppression constructs usually results in only a modest proportion of silenced individuals. Recent work has demonstrated the potential for constructs encoding self-complementary 'hairpin' RNA (hpRNA) to efficiently silence genes. In this study we examine design rules for efficient gene silencing, in terms of both the proportion of independent transgenic plants showing silencing, and the degree of silencing. Using hpRNA constructs containing sense/anti-sense arms ranging from 98 to 853 nt gave efficient silencing in a wide range of plant species, and inclusion of an intron in these constructs had a consistently enhancing effect. Intron-containing constructs (ihpRNA) generally gave 90-100% of independent transgenic plants showing silencing. The degree of silencing with these constructs was much greater than that obtained using either co-suppression or anti-sense constructs. We have made a generic vector, pHANNIBAL, that allows a simple, single PCR product from a gene of interest to be easily converted into a highly effective ihpRNA silencing construct. We have also created a high-throughput vector, pHELLSGATE, that should facilitate the cloning of gene libraries or large numbers of defined genes, such as those in EST collections, using an in vitro recombinase system. This system may facilitate the large-scale determination and discovery of plant gene functions in the same way as RNAi is being used to examine gene function in Caenorhabditis elegans.
Resumo:
Since 11 September 2001, Muslim minorities have experienced intensive "othering" in “Western” countries, above all in those US-led anglophone nations which invaded Afghanistan and Iraq to prosecute their "war on terror". This paper examines the cases of Britain and Australia, where whole communities of Muslims have been criminalised as "evil" and a "fifth column" enemy within by media, politicians, the security services and the criminal justice system. Although constituted by disparate ethnic groups, the targeted communities in each of these nations have experienced similar treatment in the State's anti-terrorist measures, as well as ideological responses and everyday racism, making comparable the two cases.
Resumo:
Fungi are eukaryotic organisms and considered to be less adaptable to extreme environments when compared to bacteria. While there are no thermophilic microfungi in a strict sense, some fungi have adapted to life in the cold. Cold-active microfungi have been isolated from the Antarctic and their enzyme activities explored with a view to finding new candidates for industrial use. On another front, environmental pollution by petroleum products in the Antarctic has led to a search for, and the subsequent discovery of, fungal isolates capable of degrading hydrocarbons. The work has paved the way to developing a bioremedial approach to containing this type of contamination in cold climates. Here we discuss our efforts to map the capability of Antarctic microfungi to degrade oil and also introduce a novel cold-active fungal lipase enzyme.
Resumo:
There is a significant lack of sociological research in Spain about anti-Semitism. At the same time there are alarming anti-Semitic tendencies and anti-Jewish stereotypes which are above the European average. This article aims to explain this lack of sociological research about anti-Semitism in Spain. Therefore two types of explications are offered: on the one hand side some structural problems will be shown which sociology in general had since its beginnings and which complicate the understanding of anti-Semitism. Furthermore explications regarding the specific social and historic situation in Spain and of Spanish sociology in particular will be exposed. It will be shown that for its rationalistic character and with the exception of very few authors – who are considered marginalized for practical research – sociology in general has had enormous problems in understanding anti-Semitism. The specific historic situation, Francoism, the dispute about the historic memory and the delayed institutionalisation of sociology could also explain the lack of sociological interest in the topic especially in Spain. The article shows that the study of anti-Semitism is not only relevant for struggling against this burden of society in many of its variants. Furthermore, thinking about anti-Semitism can help sociology to recognise its own epistemological problems. It can serve to criticise and improve instruments of sociological research by showing the limitations of the sociological approach and to uncover the importance of interdisciplinary research for understanding specific social phenomena. In that sense, anti-Semitism, far from being a marginal subject, can be considered a key topic in the process of civilisation and it can help us to decipher the contemporary Spanish society.
Resumo:
This essay explores the ways in which the performance of Jewish identity (in the sense both of representing Jewish characters and of writing about those characters’ conscious and unconscious renditions of their Jewishness) is a particular concern (in both senses of the word) for Lorrie Moore. Tracing Moore's representations of Jewishness over the course of her career, from the early story “The Jewish Hunter” through to her most recent novel, A Gate at the Stairs, I argue that it is characterized by (borrowing a phrase from Moore herself) “performance anxiety,” an anxiety that manifests itself in awkward comedy and that can be read both in biographical terms and as an oblique commentary on, or reworking of, the passing narrative, which I call “anti-passing.” Just as passing narratives complicate conventional ethno-racial definitions so Moore's anti-passing narratives, by representing Jews who represent themselves as other to themselves, as well as to WASP America, destabilize the category of Jewishness and, by implication, deconstruct the very notion of ethnic categorization.
Resumo:
The peroxisomal proliferating-activated receptors (PPARs) are lipid-sensing transcription factors that have a role in embryonic development, but are primarily known for modulating energy metabolism, lipid storage, and transport, as well as inflammation and wound healing. Currently, there is no consensus as to the overall combined function of PPARs and why they evolved. We hypothesize that the PPARs had to evolve to integrate lipid storage and burning with the ability to reduce oxidative stress, as energy storage is essential for survival and resistance to injury/infection, but the latter increases oxidative stress and may reduce median survival (functional longevity). In a sense, PPARs may be an evolutionary solution to something we call the 'hypoxia-lipid' conundrum, where the ability to store and burn fat is essential for survival, but is a 'double-edged sword', as fats are potentially highly toxic. Ways in which PPARs may reduce oxidative stress involve modulation of mitochondrial uncoupling protein (UCP) expression (thus reducing reactive oxygen species, ROS), optimising forkhead box class O factor (FOXO) activity (by improving whole body insulin sensitivity) and suppressing NFkB (at the transcriptional level). In light of this, we therefore postulate that inflammation-induced PPAR downregulation engenders many of the signs and symptoms of the metabolic syndrome, which shares many features with the acute phase response (APR) and is the opposite of the phenotype associated with calorie restriction and high FOXO activity. In genetically susceptible individuals (displaying the naturally mildly insulin resistant 'thrifty genotype'), suboptimal PPAR activity may follow an exaggerated but natural adipose tissue-related inflammatory signal induced by excessive calories and reduced physical activity, which normally couples energy storage with the ability to mount an immune response. This is further worsened when pancreatic decompensation occurs, resulting in gluco-oxidative stress and lipotoxicity, increased inflammatory insulin resistance and oxidative stress. Reactivating PPARs may restore a metabolic balance and help to adapt the phenotype to a modern lifestyle.
Resumo:
The recent appreciation of the role played by endogenous counterregulatory mechanisms in controlling the outcome of the host inflammatory response requires specific analysis of their spatial and temporal profiles. In this study, we have focused on the glucocorticoid-regulated anti-inflammatory mediator annexin 1. Induction of peritonitis in wild-type mice rapidly (4 h) produced the expected signs of inflammation, including marked activation of resident cells (e.g., mast cells), migration of blood-borne leukocytes, mirrored by blood neutrophilia. These changes subsided after 48-96 h. In annexin 1null mice, the peritonitis response was exaggerated (∼40% at 4 h), with increased granulocyte migration and cytokine production. In blood leukocytes, annexin 1 gene expression was activated at 4, but not 24, h postzymosan, whereas protein levels were increased ai both time points. Locally, endothelial and mast cell annexin 1 gene expression was not detectable in basal conditions, whereas it was switched on during the inflammatory response. The significance of annexin 1 system plasticity in the anti-inflammatory properties of dexamethasone was assessed. Clear induction of annexin 1 gene in response to dexamethasone treatment was evident in the circulating and migrated leukocytes, and in connective tissue mast cells; this was associated with the steroid failure to inhibit leukocyte trafficking, cytokine synthesis, and mast cell degranulation in the annexin 1null mouse. In conclusion, understanding how inflammation is brought under control will help clarify the complex interplay between pro- and anti-inflammatory pathways operating during the host response to injury and infection. Copyright © 2006 by The American Association of Immunologists, Inc.