76 resultados para Semigroups
Resumo:
Let X be a finite or infinite chain and let be the monoid of all endomorphisms of X. In this paper, we describe the largest regular subsemigroup of and Green's relations on. In fact, more generally, if Y is a nonempty subset of X and is the subsemigroup of of all elements with range contained in Y, we characterize the largest regular subsemigroup of and Green's relations on. Moreover for finite chains, we determine when two semigroups of the type are isomorphic and calculate their ranks.
Resumo:
Algebra Colloquium, 15 (2008), p. 581–588
Resumo:
Publicationes Mathematicae Debrecen
Resumo:
Glasgow Mathematical Journal, nº 50 (2008), p. 325-333
Resumo:
In this paper, we introduce a new notion in a semigroup $S$ as an extension of Mary's inverse. Let $a,d\in S$. An element $a$ is called left (resp. right) invertible along $d$ if there exists $b\in S$ such that $bad=d$ (resp. $dab=b$) and $b\leq_\mathcal{L}d$ (resp. $b\leq_\mathcal{R}d$). An existence criterion of this type inverse is derived. Moreover, several characterizations of left (right) regularity, left (right) $\pi$-regularity and left (right) $*$-regularity are given in a semigroup. Further, another existence criterion of this type inverse is given by means of a left (right) invertibility of certain elements in a ring. Finally we study the (left, right) inverse along a product in a ring, and, as an application, Mary's inverse along a matrix is expressed.
Resumo:
Let V be an infinite-dimensional vector space and for every infinite cardinal n such that n≤dimV, let AE(V,n) denote the semigroup of all linear transformations of V whose defect is less than n. In 2009, Mendes-Gonçalves and Sullivan studied the ideal structure of AE(V,n). Here, we consider a similarly-defined semigroup AE(X,q) of transformations defined on an infinite set X. Quite surprisingly, the results obtained for sets differ substantially from the results obtained in the linear setting.
Resumo:
Finitely generated linear semigroups over a field K that have intermediate growth are considered. New classes of such semigroups are found and a conjecture on the equivalence of the subexponential growth of a finitely generated linear semigroup S and the nonexistence of free noncommutative subsemigroups in S, or equivalently the existence of a nontrivial identity satisfied in S, is stated. This ‘growth alternative’ conjecture is proved for linear semigroups of degree 2, 3 or 4. Certain results supporting the general conjecture are obtained. As the main tool, a new combinatorial property of groups is introduced and studied.
Resumo:
Mathematicians who make significant contributions towards development of mathematical science are not getting the recognition they deserve, according to Cusat Vice Chancellor Dr. J. Letha. She was delivering the inaugural address at the International Conference on Semigroups, Algebras and Applications (ICSA 2015) organized by Dept. of Mathematics, Cochin university of Science and Technology on Thursday. Mathematics plays an important role in the development of basic science. The academic community should not delay in accepting and appreciating this, Dr. Letha added. Dr. Godfrey Louis, Dean, Faculty of Science presided over the inaugural function. Prof. P. G. Romeo, Head, Dept. of Mathematics, Prof. John C. Meakin, University of Nebraska-Lincoln, USA, Prof. A. N. Balchand, Syndicate Member, Prof. K. A. Zakkariya, Syndicate Member, Prof. A. R. Rajan, Emeritus Professor, University of Kerala and Prof. A. Vijayakumar, Dept. of Mathematics, Cusat addressed the gathering. Around 50 research papers will be presented at the Conference.Prof. K. S. S. Nambooripad, the internationally famous mathematician with enormous contributions in the field of semigroup theory, who has attained eighty years of age will be felicitated on 18th at 5.00 pm during a function presided over by Dr. K. Poulose Jacob, Pro-Vice Chancellor. Dr. Suresh Das, Executive President, KSCSTE, Dr. A. M. Mathai, Director, CMSS and President, Indian Mathematical Society, Dr. P. G. Romeo, Head, Dept. of Mathematics and Dr. B. Lakshmi, Dept. of Mathematics will speak on the occasion.
Resumo:
In this article we introduce the concept of a gradient-like nonlinear semigroup as an intermediate concept between a gradient nonlinear semigroup (those possessing a Lyapunov function, see [J.K. Hale, Asymptotic Behavior of Dissipative Systems, Math. Surveys Monogr., vol. 25, Amer. Math. Soc., 1989]) and a nonlinear semigroup possessing a gradient-like attractor. We prove that a perturbation of a gradient-like nonlinear semigroup remains a gradient-like nonlinear semigroup. Moreover, for non-autonomous dynamical systems we introduce the concept of a gradient-like evolution process and prove that a non-autonomous perturbation of a gradient-like nonlinear semigroup is a gradient-like evolution process. For gradient-like nonlinear semigroups and evolution processes, we prove continuity, characterization and (pullback and forwards) exponential attraction of their attractors under perturbation extending the results of [A.N. Carvalho, J.A. Langa, J.C. Robinson, A. Suarez, Characterization of non-autonomous attractors of a perturbed gradient system, J. Differential Equations 236 (2007) 570-603] on characterization and of [A.V. Babin, M.I. Vishik, Attractors in Evolutionary Equations, Stud. Math. Appl.. vol. 25, North-Holland, Amsterdam, 1992] on exponential attraction. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
In this paper we prove that gradient-like semigroups (in the sense of Carvalho and Langa (2009 J. Diff. Eqns 246 2646-68)) are gradient semigroups (possess a Lyapunov function). This is primarily done to provide conditions under which gradient semigroups, in a general metric space, are stable under perturbation exploiting the known fact (see Carvalho and Langa (2009 J. Diff. Eqns 246 2646-68)) that gradient-like semigroups are stable under perturbation. The results presented here were motivated by the work carried out in Conley (1978 Isolated Invariant Sets and the Morse Index (CBMS Regional Conference Series in Mathematics vol 38) (RI: American Mathematical Society Providence)) for groups in compact metric spaces (see also Rybakowski (1987 The Homotopy Index and Partial Differential Equations (Universitext) (Berlin: Springer)) for the Morse decomposition of an invariant set for a semigroup on a compact metric space).
Resumo:
In this paper, we introduce the concept of dynamic Morse decomposition for an action of a semigroup of homeomorphisms. Conley has shown in [5, Sec. 7] that the concepts of Morse decomposition and dynamic Morse decompositions are equivalent for flows in metric spaces. Here, we show that a Morse decomposition for an action of a semigroup of homeomorphisms of a compact topological space is a dynamic Morse decomposition. We also define Morse decompositions and dynamic Morse decompositions for control systems on manifolds. Under certain condition, we show that the concept of dynamic Morse decomposition for control system is equivalent to the concept of Morse decomposition.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)