998 resultados para Semiconducting Ternary Compounds


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Gal(1-x)Mn(x)Sb epilayer was prepared on the n-type GaSb substrate by liquid phase epitaxy. The structure of the Gal(1-x)Mn(x)Sb epilayer was analyzed by double-crystal X-ray diffraction. From the difference of the lattice constant between the GaSb substrate and the Ga1-xMnxSb epilayer, the Mn content in the Ga1-xMnxSb epilayer were calculated as x = 0.016. The elemental composition of Ga1-xMnxSb epilayer was analyzed by energy dispersive spectrometer. The carrier concentration was obtained by Hall measurement. The hole concentration in the Ga1-xMnxSb epilayer is 4.06 x 10(19)cm(-3). It indicates that most of the Mn atoms in Ga1-xMnxSb take the site of Ga, and play a role of acceptors. The current-voltage curve of the Ga1-xMnxSb/GaSb heterostructure was measured, and the rectifying effect is obvious. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of 1-mu m-thick undoped In0.53Ga0.47As with different substrate growth temperature (T-g) or different beam flux pressure (BFP) of As were grown on lattice-matched semi-insulating InP (001) substrates by molecular beam epitaxy (MBE). Van der Pauw Hall measurements were carried out for these In0.53Ga0.47As samples. The residual electron concentration decreased with increasing temperature from 77 to 140 K, but increased with increasing temperature from 140 to 300 K. Rapid thermal annealing (RTA) can reduce the residual electron concentration. The residual electron mobility increased with increasing temperature from 77 to 300 K. All these electrical properties are associated with As antisite defects. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The so called material science is an always growing field in modern research. For the development of new materials not only the experimental characterization but also theoretical calculation of the electronic structure plays an important role. A class of compounds that has attracted a great deal of attention in recent years is known as REME compounds. These compounds are often referred to with RE designating rare earth, actinide or an element from group 1 - 4, M representing a late transition metal from groups 8 - 12, and E belonging to groups 13 - 15. There are more than 2000 compounds with 1:1:1 stoichiometry belonging to this class of compounds and they offer a broad variety of different structure types. Although many REME compounds are know to exist, mainly only structure and magnetism has been determined for these compounds. In particular, in the field of electronic and transport properties relatively few efforts have been made. The main focus in this study is on compounds crystallizing in MgAgAs and LiGaGe structure. Both structures can only be found among 18 valence electron compounds. The f electrons are localized and therefor not count as valence electrons. A special focus here was also on the magnetoresistance effects and spintronic properties found among the REME compounds. An examination of the following compounds was made: GdAuE (E = In, Cd, Mg), GdPdSb, GdNiSb, REAuSn (RE = Gd, Er, Tm) and RENiBi (RE = Pr, Sm, Gd - Tm, Lu). The experimental results were compared with theoretic band structure calculations. The first half metallic ferromagnet with LiGaGe structure (GdPdSb) was found. All semiconducting REME compounds with MgAgAs structure show giant magnetoresistance (GMR) at low temperatures. The GMR is related to a metal-insulator transition, and the value of the GMR depends on the value of the spin-orbit coupling. Inhomogeneous DyNiBi samples show a small positive MR at low temperature that depends on the amount of metallic impurities. At higher fields the samples show a negative GMR. Inhomogeneous nonmagnetic LuNiBi samples show no negative GMR, but a large positive MR of 27.5% at room temperature, which is interesting for application.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The phase relations in the systems Cu–O–R2O3(R = Tm, Lu) have been determined at 1273 K by X-ray diffraction, optical microscopy and electron probe microanalysis of samples equilibrated in evacuated quartz ampules and in pure oxygen. Only ternary compounds of the type Cu2R2O5 were found to be stable. The standard Gibbs energies of formation of the compounds have been measured using solid-state galvanic cells of the type, Pt|Cu2O + Cu2R2O5+ R2O3‖(Y2O3)ZrO2‖CuO + Cu2O‖Pt in the temperature range 950–1325 K. The standard Gibbs energy changes associated with the formation of Cu2R2O5 compounds from their binary component oxides are: 2CuO(s)+ Tm2O3(s)→Cu2Tm2O5(s), ΔG°=(10400 – 14.0 T/K)± 100 J mol–1, 2CuO(s)+ Lu2O3(s)→Cu2Lu2O5(s), ΔG°=(10210 – 14.4 T/K)± 100 J mol–1 Since the formation is endothermic, the compounds become thermodynamically unstable with respect to component oxides at low temperatures, Cu2Tm2O5 below 743 K and Cu2Lu2O5 below 709 K. When the chemical potential of oxygen over the Cu2R2O5 compounds is lowered, they decompose according to the reaction, 2Cu2R2O5(s)→2R2O3(s)+ 2Cu2O(s)+ O2(g) The equilibrium oxygen potential corresponding to this reaction is obtained from the emf. Oxygen potential diagrams for the Cu–O–R2O3 systems at 1273 K are presented.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The electronic and the magnetic structure of the Nd2Fe17N1 phase in the family of Nd-Fe-N ternary compounds have been calculated using the first-principles, spin-polarized orthogonalized linear-combination-of-atomic-orbitals method. Results are presented in the form of site-decomposed and spin-projected partial density of states. The occupation sites of the three N atoms are determined by an average radial distribution of all possible N site configurations. Both cases of N occupying the 3b and the 18g sites are studied. The results indicate that the 6c Fe sites have the maximum and the 18h Fe sites have the minimum local moments. This is in good agreement with experiment. It is concluded that the influence on the local moment due to lattice expansion is less important compared to that due to interatomic interaction between the N atom and its neighbors. The results also show the important role of N atoms in raising the Curie temperature of this compound.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Ternary compounds of copper indium selenide nano- and microsized materials were prepared through colloidal synthesis using an indium(III) selenide precursor and copper(I) chloride via a microwave-assisted ionothermal route. The indium(III) selenide precursor used in the reaction was formed in situ from a diphenyl diselenide precursor and chloroindate(III) ionic liquids (ILs), also via a microwave-assisted ionothermal route. The crystal structures of three intermediates, namely, CuCl2(OMe)2(H2O)){Cu(PhSeO2)2}n, [CuCl(Se2Ph2)2]n, and [C8mim]3{Cu(I)Cl2Cu(II)OCl8}n, were determined after formation through a ionothermal procedure utilizing metal-containing imidazolium ILs and a selenium precursor with conventional heating. Herein, we compare the use of microwave irradiation over conventional heating with different ILs on the stoichiometry of the resulting products. The influence of the reaction temperature, reaction time, order of addition of reagents, and variation of ILs, which were characterized using PXRD, SEM, and EDX, on the final products was investigated.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In dieser Arbeit wurden isotherme Schnitte der ternären Systeme Ti-Fe-Sb, Zr-Fe-Sb und Nb-Fe-Sb bei 800 bzw. 600 °C untersucht. Die Bildung von vier von den Binärbereichen getrennten ternären Verbindungen im System Ti-Fe-Sb, drei im System Zr-Fe-Sb und einer Verbindung im System Nb-Fe-Sb wurde festgestellt bzw. bestätigt. In den ersten zwei Systemen ist die Bildung von festen Lösungen auf der Basis von binären sowie ternären Phasen stark ausgeprägt. Es wurde die Abhängigkeit des Strukturtyps der Laves-Phasen M(Fe???Sb?)??? (M = Ti, Zr, Nb) von der Elektronenkonzentration und den Atomradien der Komponenten gezeigt. 18 isotype Verbindungen M?Me’???X??? (M = Zr, Hf; M’ = Fe, Co, Ni; X = Sn, Sb, Bi) des geordneten Fe?P-Strukturtyps wurden synthetisiert. Die Untersuchungen der Transporteigenschaften dieser Verbindungen belegen deren metallischen Charakter. Es wurde die Bildung der neuen equiatomen Verbindungen in den Systemen Zr-Cu-Sn und Hf-Cu-Sn der Strukturtypen TiNiSi bzw. LiGaGe und der Verbindung HfFe???Sb des TiNiSi-Strukturtyps festgestellt. Die Transporteigenschaften der Reihe von festen Lösungen V???Ti?FeSb wurden untersucht. Es wurde gezeigt, dass die größte Erhöhung des Seebeck-Koeffizienten bei der kleinen Konzentration der vierten Komponente erreicht wird. Der höchste Wert des Seebeck-Koeffizienten (370 ?V/K bei 380 K) wurde für die Zusammensetzung V????Ti????FeSb festgestellt. Die Serie der quaternären Phasen Sc???Nb???NiSn, ZrNiIn???Sb???, HfNiIn???Sb???, ZrCo???Cu???Sn und HfCo???Cu???Sn. zeigt die Möglichkeit der Phasenbildung der Strukturtypen AlLiSi, LiGaGe bzw. TiNiSi auch im Fall der Abwesenheit einer oder beider ternärer Randverbindungen. Für die Verbindung Sc???Nb???NiSn wurden Halbleitereigenschaften festgestellt. Insgesamt wurde die Kristallstruktur der 25 neuen, zum ersten Mal synthetisierten ternären und quaternären Verbindungen bestimmt. Schlüsselwörter: Phasendiagramm, Phasengleichgewicht, Kristallstruktur, intermetallische Verbindungen, Halb-Heusler-Verbindungen, thermoelektrische Materialien, elektrischer Widerstand, Seebeck-Koeffizient.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Charge transport properties in organic semiconductors depend strongly on molecular order. Here we demonstrate field-effect transistors where drain current flows through a precisely defined array of nanostripes made of crystalline and highly ordered molecules. The molecular stripes are fabricated across the channel of the transistor by a stamp-assisted deposition of the molecular semiconductors from a solution. As the solvent evaporates, the capillary forces drive the solution to form menisci under the stamp protrusions. The solute precipitates only in the regions where the solution is confined by the menisci once the critical concentration is reached and self-organizes into molecularly ordered stripes 100-200 nm wide and a few monolayers high. The charge mobility measured along the stripes is 2 orders of magnitude larger than the values measured for spin-coated thin films.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, we report the device characteristics of ambipolar thin-film transistors (TFTs) based on a diketopyrrolopyrrole-benzothiadiazole copolymer. This polymer semiconductor exhibits the largest comparable electron and hole mobility values in a single organic semiconductor. The key to realizing such high mobility values, which are $0.5&cm}{2}/\hbox{V}̇\hbox{s, is molecular design, i.e., the use of suitable surface treatments of the source/drain contact electrodes and device architectures, particularly top-gate configurations. The subthreshold characteristics of the TFT devices are greatly improved by the use of dual-gate device geometry. We also report the first measurement of the velocity distribution of electron and hole velocities in an ambipolar organic semiconductor.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In recent years, the electron-accepting diketopyrrolopyrrole (DPP) moiety has been receiving considerable attention for constructing donor-acceptor (D-A) type organic semiconductors for a variety of applications, particularly for organic thin film transistors (OTFTs) and organic photovoltaics (OPVs). Through association of the DPP unit with appropriate electron donating building blocks, the resulting D-A molecules interact strongly in the solid state through intermolecular D-A and π-π interactions, leading to highly ordered structures at the molecular and microscopic levels. The closely packed molecules and crystalline domains are beneficial for intermolecular and interdomain (or intergranular) charge transport. Furthermore, the energy levels can be readily adjusted, affording p-type, n-type, or ambipolar organic semiconductors with highly efficient charge transport properties in OTFTs. In the past few years, a number of DPP-based small molecular and polymeric semiconductors have been reported to show mobility close to or greater than 1 cm2 V -1 s-1. DPP-based polymer semiconductors have achieved record high mobility values for p-type (hole mobility: 10.5 cm2 V-1 s-1), n-type (electron mobility: 3 cm2 V-1 s-1), and ambipolar (hole/electron mobilities: 1.18/1.86 cm2 V-1 s-1) OTFTs among the known polymer semiconductors. Many DPP-based organic semiconductors have favourable energy levels and band gaps along with high hole mobility, which enable them as promising donor materials for OPVs. Power conversion efficiencies (PCE) of up to 6.05% were achieved for OPVs using DPP-based polymers, demonstrating their potential usefulness for the organic solar cell technology. This article provides an overview of the recent exciting progress made in DPP-containing polymers and small molecules that have shown high charge carrier mobility, around 0.1 cm2 V-1 s-1 or greater. It focuses on the structural design, optoelectronic properties, molecular organization, morphology, as well as performances in OTFTs and OPVs of these high mobility DPP-based materials.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Novel low bandgap solution processable diketopyrrolopyrrole (DPP) based derivatives functionalized with electron withdrawing end capping groups (trifluoromethylphenyl and trifluorophenyl) were synthesized, and their photophysical, electrochemical and photovoltaic properties were investigated. These compounds showed optical bandgaps ranging from 1.81 to 1.94 eV and intense absorption bands that cover a wide range from 300 to 700 nm, attributed to charge transfer transition between electron rich phenylene-thienylene moieties and the electron withdrawing diketopyrrolopyrrole core. All of the compounds were found to be fluorescent in solution with an emission wavelength ranging from 600 to 800 nm. Cyclic voltammetry indicated reversible oxidation and reduction processes with tuning of HOMO-LUMO energy levels. Bulk heterojunction (BHJ) solar cells using poly(3-hexylthiophene) (P3HT) as the electron donor with these new acceptors were used for fabrication. The best power conversion efficiencies (PCE) using 1:2 donor-acceptor by weight mixture were 1% under simulated AM 1.5 solar irradiation of 100 mW cm-2. These findings suggested that a DPP core functionalized with electron accepting end-capping groups were a promising new class of solution processable low bandgap n-type organic semiconductors for organic solar cell applications.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The isothermal sections of the phase diagram for the system Ca-Cu-0 at 1073 and 1223 K have been determined. Several compositions in the ternary system were quenched after equilibration, and the phases present were identified by optical microscopy, X-ray diffraction, and electron probe microanalysis. Two ternary compounds Ca2CuO3 and Cao.8&uO1.9s were identified at 1073 K. However, only Ca2CuO3 was found to be stable at 1223 K. The thermodynamic properties of the two ternary compounds were determined using solid-state cells incorporating either an oxide or a fluoride solid electrolyte. The results for both types of cells were internally consistent. The compound C ~ O . ~ & U Ow~h.i~ch~ c, a n also be represented as Ca15Cu18035h, as been identified in an earlier investigation as Cao.828CuOz. Using a novel variation of the galvanic cell technique, in which the emf of a cell incorporating a fluoride electrolyte is measured as a function of the oxygen potential of the gas phase in equilibrium with the condensed phase electrodes, it has been confirmed that the compound Cao.828CuO1.93 (Ca15Cu18035d) oes not have significant oxygen nonstoichiometry. Phase relations have been deduced from the thermodynamic data as a function of the partial pressure of oxygen for the system Ca-Cu-0 at 873, 1073, and 1223 K.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Studies on the phase relations in the system Nd-Mn-O at 1223 K showed two stable ternary compounds, NdMnO3 and NdMn2O5. An isothermal section of the ternary phase diagram for the system Nd-Mn-O was constructed based on phase analysis of samples quenched after equilibration using XRPD and EDS. An advanced version of the solid-state cell incorporating a buffer electrode was used to determine the Gibbs energies of decomposition of NdMnO3 and NdMn2O5 in the temperature range from 925 to 1400 K. Pure oxygen gas at 0.1 MPa was used as the reference electrode, and yttria-stabilized zirconia as the solid electrolyte. The buffer electrode was designed to prevent polarization of the three-phase electrode and ensure accurate data. The measured oxygen potential corresponding to the reaction,2 Nd2O3 + 4 MnO + O-2 --> 4 NdMnO3 can be represented by the equation,Amu(o2) / J.mol(-1) (+/-580) = -523 960 + 170.96 (T/K)Similarly, for the formation of NdMn2O5 according to the reaction,3 NdMnO3 + Mn3O4 + O-2 --> 3 NdMn2O5 Amu(o2) / J.mol(-1) (+/-660) = - 269 390 + 181.74 (T/K) (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The standard Gibbs free energy of formation of magnesium and cadmiumchromites have been determined by potentiometric measurements on reversiblesolid-state electrochemical cells [dformula (Au-5%Cd, , Au-5%Cd; Pt, + , CaO-ZrO[sub 2], + ,Pt; CdO, , CdCr[sub 2]O[sub 4] + Cr[sub 2]O[sub 3])] in the temperature range 500°–730°C, and [dformula Pt, Cr + Cr[sub 2]O[sub 3]/Y[sub 2]O[sub 3]-ThO[sub 2]/Cr + MgCr[sub 2]O[sub 4] + MgO, Pt] in the temperature range 800°–1200°C. The temperature dependence of the freeenergies of formation of the ternary compounds can be represented by theequations [dformula CdO(r.s.) + Cr[sub 2]O[sub 3](cor) --> CdCr[sub 2]O[sub 4](sp)] [dformula Delta G[sup 0] = - 42,260 + 7.53T ([plus-minus]400) J] and [dformula MgO(r.s.) + Cr[sub 2]O[sub 3](cor) --> MgCr[sub 2]O[sub 4](sp)] [dformula Delta G[sup 0] = - 45,200 + 5.36T ([plus-minus]400) J] The entropies of formation of these spinels are discussed in terms of cationdisorder and extent of reduction of Cr3+ ions to Cr2+ ions. Thermodynamicdata on the chromates of cadmium and magnesium are derived by combiningthe results obtained in this study with information available in the literatureon high temperature, high pressure phase equilibria in the systems CdO-Cr2O3-O2 and MgO-Cr2O3-O2.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The interfacial reactions between several Au(Cu) alloys and pure Sn were studied experimentally at 200A degrees C. Amounts of Cu in the AuSn4 and AuSn2 phases were as low as 1 at.%. On the basis of these experimental results there is no continuous solid solution between (Au,Cu)Sn and (Cu,Au)(6)Sn-5. The copper content of (Au,Cu)Sn was determined to be approximately 7-8 at.%. Substantial amounts of Au were present in the (Cu,Au)(6)Sn-5 and (Cu,Au)(3)Sn phases. Two ternary compounds were formed, one with stoichiometry varying from (Au40.5Cu39)Sn-20.5 to (Au20.2Cu59.3)Sn-20.5 (ternary ``B''), the other with the composition Au34Cu33Sn33 (ternary ``C''). The measured phase boundary compositions of the product phases are plotted on the available Au-Cu-Sn isotherm and the phase equilibria are discussed. The complexity and average thickness of the diffusion zone decreases with increasing Cu content except for the Au(40 at.%Cu) couple.