944 resultados para Semiarid grassland ecosystem
Resumo:
The influence of liming on rhizosphere microbial biomass C and incorporation of root exudates was studied in the field by in situ pulse labelling of temperate grassland vegetation with (13)CO(2) for a 3-day period. In plots that had been limed (CaCO(3) amended) annually for 3 years, incorporation into shoots and roots was, respectively, greater and lower than in unlimed plots. Analysis of chloroform-labile C demonstrated lower levels of (13)C incorporation into microbial biomass in limed soils compared to unlimed soils. The turnover of the recently assimilated (13)C compounds was faster in microbial biomass from limed than that from unlimed soils, suggesting that liming increases incorporation by microbial communities of root exudates. An exponential decay model of (13)C in total microbial biomass in limed soils indicated that the half-life of the tracer within this carbon pool was 4.7 days. Results are presented and discussed in relation to the absolute values of (13)C fixed and allocated within the plant-soil system.
Resumo:
Grasslands provide many ecosystem services including carbon storage, biodiversity preservation and livestock forage production. These ecosystem services will change in the future in response to multiple global environmental changes, including climate change and increased nitrogen inputs. We conducted an experimental study over 3 years in a mesotrophic grassland ecosystem in southern England. We aimed to expose plots to rainfall manipulation that simulated IPCC 4th Assessment projections for 2100 (+15 % winter rainfall and −30 % summer rainfall) or ambient climate, achieving +15 % winter rainfall and −39 % summer rainfall in rainfall-manipulated plots. Nitrogen (40 kg ha−1 year−1) was also added to half of the experimental plots in factorial combination. Plant species composition and above ground biomass were not affected by rainfall in the first 2 years and the plant community did not respond to nitrogen enrichment throughout the experiment. In the third year, above-ground plant biomass declined in rainfall-manipulated plots, driven by a decline in the abundances of grass species characteristic of moist soils. Declining plant biomass was also associated with changes to arthropod communities, with lower abundances of plant-feeding Auchenorrhyncha and carnivorous Araneae indicating multi-trophic responses to rainfall manipulation. Plant and arthropod community composition and plant biomass responses to rainfall manipulation were not modified by nitrogen enrichment, which was not expected, but may have resulted from prior nitrogen saturation and/or phosphorus limitation. Overall, our study demonstrates that climate change may in future influence plant productivity and induce multi-trophic responses in grasslands.
Resumo:
Ecosystem functioning in grasslands is regulated by a range of biotic and abiotic factors, and the role of microbial communities in regulating ecosystem function has been the subject of much recent scrutiny. However, there are still knowledge gaps regarding the impacts of rainfall and vegetation change upon microbial communities and the implications of these changes for ecosystem functioning. We investigated this issue using data from an experimental mesotrophic grassland study in south-east England, which had been subjected to four years of rainfall and plant functional composition manipulations. Soil respiration, nitrogen and phosphorus stocks were measured, and the abundance and community structure of soil microbes were characterised using quantitative PCR and multiplex-TRFLP analysis, respectively. Bacterial community structure was strongly related to the plant functional composition treatments, but not the rainfall treatment. However, there was a strong effect of both rainfall change and plant functional group upon bacterial abundance. There was also a weak interactive effect of the two treatments upon fungal community structure, although fungal abundance was not affected by either treatment. Next, we used a statistical approach to assess whether treatment effects on ecosystem function were regulated by the microbial community. Our results revealed that ecosystem function was influenced by the experimental treatments, but was not related to associated changes to the microbial community. Overall, these results indicate that changes in fungal and bacterial community structure and abundance play a relatively minor role in determining grassland ecosystem function responses to precipitation and plant functional composition change, and that direct effects on soil physical and chemical properties and upon plant and microbial physiology may play a more important role.
Resumo:
Species diversity promotes the delivery of multiple ecosystem functions (multifunctionality). However, the relative functional importance of rare and common species in driving the biodiversity–multifunctionality relationship remains unknown. We studied the relationship between the diversity of rare and common species (according to their local abundances and across nine different trophic groups), and multifunctionality indices derived from 14 ecosystem functions on 150 grasslands across a land-use intensity (LUI) gradient. The diversity of above- and below-ground rare species had opposite effects, with rare above-ground species being associated with high levels of multifunctionality, probably because their effects on different functions did not trade off against each other. Conversely, common species were only related to average, not high, levels of multifunctionality, and their functional effects declined with LUI. Apart from the community-level effects of diversity, we found significant positive associations between the abundance of individual species and multifunctionality in 6% of the species tested. Species-specific functional effects were best predicted by their response to LUI: species that declined in abundance with land use intensification were those associated with higher levels of multifunctionality. Our results highlight the importance of rare species for ecosystem multifunctionality and help guiding future conservation priorities.
Resumo:
大气CO2 浓度和降水量增加有可能大幅提高中国北方部分草地生态系统净初级生产力,进而导致向土壤中输送的有机物相应增加。本研究以位于内蒙古自治区东乌珠穆沁旗内的半干旱草地生态系统为研究对象,通过向10−20 cm 土层添加不同质量和数量的植物凋枯物碎屑模拟有机物输入增加和喷灌模拟降水量提升,同时测定土壤微生物群落动态和植物生长指标,探讨在增加有机物输入和土壤水分的情况下土壤生物过程的变化及其对土壤碳排放和贮存的反馈作用。 研究结果表明,有机物添加可促进植物地上部分及根系的生长,并显著提高土壤中可溶性有机碳(能量)和氮(养分)的含量。土壤能量和养分水平的提高促进了土壤微生物的生长:在底物可利用性水平较高时,r−对策微生物(指具有生长迅速、C/N 值较低的微生物群组)在群落中占优势地位;随着底物水平的降低,土壤中K-对策微生物(指具有生长缓慢、C/N 值较高的微生物群组)在群落中逐渐占据优势地位。土壤微生物群落组成的改变进一步导致了微生物功能群代谢活性和特征的变化,具体表现为提高了有机物添加处理中土壤细菌群落的代谢潜能,并使细菌在群落水平上的生理剖面特征明显区别于未添加有机物的处理。 研究样地内土壤微生物主要受到底物中的能量(碳)限制,土壤活性有机质库作为可利用性较高的能量和养分的重要来源,对土壤微生物活性和土壤碳周转起着比水分因子更加重要的作用。土壤水分主要影响植物生长和根系活性,并增加了土壤微生物对底物响应的复杂性,但它对地下生物过程的作用程度以底物中能量和养分水平为前提。 利用稳定性13C 同位素示踪技术测量后发现,添加C4-植物凋枯物会加速C3 底物中碳的分解速度。结合有机物添加后土壤有机质库的变化,可以推测植物凋枯物(即能量物质)输入增加会导致土壤原生有机碳的正向激发效应。在此过程中,土壤微生物群落组成及功能群代谢活性的变化起着至关重要的作用。 不同光合途径(C3 和C4)的植物和同一植物不同器官组织(地上部分和根系)的凋枯物添加对地下生物过程,特别是土壤微生物群落代谢功能的影响是不同的。在添加C3-草本凋枯物的处理中,土壤细菌群落主要利用的碳源为氨基酸类化合物;而在添加C4-植物凋枯物的处理中,土壤细菌群落主要利用的碳源为羧酸类化合物。 本研究在野外自然条件下证明了在能量缺乏的中国北方草地生态系统中,土壤有机物输入增加不但不会提高土壤有机碳库的大小,而且可能导致土壤原生有机碳的激发效应。在利用土壤呼吸与环境因子(如温度)的关系进行模拟预测土壤碳排放时,需要考虑不同生态系统底物中的能量和养分水平,以及土壤微生物和植物根系等地下生物过程对底物水平的适应性。
Resumo:
Through 2-3-year (2003-2005) continuous eddy covariance measurements of carbon dioxide and water vapor fluxes, we examined the seasonal, inter-annual, and inter-ecosystem variations in the ecosystem-level water use efficiency (WUE, defined as the ratio of gross primary production, GPP, to evapotranspiration, ET) at four Chinese grassland ecosystems in the Qinghai-Tibet Plateau and North China. Representing the most prevalent grassland types in China, the four ecosystems are an alpine swamp meadow ecosystem, an alpine shrub-meadow ecosystem, an alpine meadow-steppe ecosystem, and a temperate steppe ecosystem, which illustrate a water availability gradient and thus provide us an opportunity to quantify environmental and biological controls on ecosystem WUE at different spatiotemporal scales. Seasonally, WUE tracked closely with GPP at the four ecosystems, being low at the beginning and the end of the growing seasons and high during the active periods of plant growth. Such consistent correspondence between WUE and GPP suggested that photosynthetic processes were the dominant regulator of the seasonal variations in WUE. Further investigation indicated that the regulations were mainly due to the effect of leaf area index (LAI) on carbon assimilation and on the ratio of transpiration to ET (T/ET). Besides, except for the swamp meadow, LAI also controlled the year-to-year and site-to-site variations in WUE in the same way, resulting in the years or sites with high productivity being accompanied by high WUE. The general good correlation between LAI and ecosystem WUE indicates that it may be possible to predict grassland ecosystem WUE simply with LAI. Our results also imply that climate change-induced shifts in vegetation structure, and consequently LAI may have a significant impact on the relationship between ecosystem carbon and water cycles in grasslands.