949 resultados para Semi-implicit methods
Resumo:
Semi-implicit, second order temporal and spatial finite volume computations of the flow in a differentially heated rotating annulus are presented. For the regime considered, three cyclones and anticyclones separated by a relatively fast moving jet of fluid or "jet stream" are predicted. Two second order methods are compared with, first order spatial predictions, and experimental measurements. Velocity vector plots are used to illustrate the predicted flow structure. Computations made using second order central differences are shown to agree best with experimental measurements, and to be stable for integrations over long time periods (> 1000s). No periodic smoothing is required to prevent divergence.
Resumo:
The immersed boundary method is a versatile tool for the investigation of flow-structure interaction. In a large number of applications, the immersed boundaries or structures are very stiff and strong tangential forces on these interfaces induce a well-known, severe time-step restriction for explicit discretizations. This excessive stability constraint can be removed with fully implicit or suitable semi-implicit schemes but at a seemingly prohibitive computational cost. While economical alternatives have been proposed recently for some special cases, there is a practical need for a computationally efficient approach that can be applied more broadly. In this context, we revisit a robust semi-implicit discretization introduced by Peskin in the late 1970s which has received renewed attention recently. This discretization, in which the spreading and interpolation operators are lagged. leads to a linear system of equations for the inter-face configuration at the future time, when the interfacial force is linear. However, this linear system is large and dense and thus it is challenging to streamline its solution. Moreover, while the same linear system or one of similar structure could potentially be used in Newton-type iterations, nonlinear and highly stiff immersed structures pose additional challenges to iterative methods. In this work, we address these problems and propose cost-effective computational strategies for solving Peskin`s lagged-operators type of discretization. We do this by first constructing a sufficiently accurate approximation to the system`s matrix and we obtain a rigorous estimate for this approximation. This matrix is expeditiously computed by using a combination of pre-calculated values and interpolation. The availability of a matrix allows for more efficient matrix-vector products and facilitates the design of effective iterative schemes. We propose efficient iterative approaches to deal with both linear and nonlinear interfacial forces and simple or complex immersed structures with tethered or untethered points. One of these iterative approaches employs a splitting in which we first solve a linear problem for the interfacial force and then we use a nonlinear iteration to find the interface configuration corresponding to this force. We demonstrate that the proposed approach is several orders of magnitude more efficient than the standard explicit method. In addition to considering the standard elliptical drop test case, we show both the robustness and efficacy of the proposed methodology with a 2D model of a heart valve. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
In this paper, we derive a new nonlinear two-sided space-fractional diffusion equation with variable coefficients from the fractional Fick’s law. A semi-implicit difference method (SIDM) for this equation is proposed. The stability and convergence of the SIDM are discussed. For the implementation, we develop a fast accurate iterative method for the SIDM by decomposing the dense coefficient matrix into a combination of Toeplitz-like matrices. This fast iterative method significantly reduces the storage requirement of O(n2)O(n2) and computational cost of O(n3)O(n3) down to n and O(nlogn)O(nlogn), where n is the number of grid points. The method retains the same accuracy as the underlying SIDM solved with Gaussian elimination. Finally, some numerical results are shown to verify the accuracy and efficiency of the new method.
Resumo:
The present study proposed the semi-empirical methods for determining the efflux velocity from a ship's propeller. Ryan [1] defined the efflux velocity as the maximum velocity taken from a time-averaged velocity distribution along the initial propeller plane. The Laser Doppler Anemometry (LDA) and Computational Fluid Dynamics (CFD) were used to acquire the efflux velocity from the two propellers with different geometrical characteristics. The LDA and CFD results were compared in order to investigate the equation derived from the axial momentum theory. The study confirmed the validation of the axial momentum theory and its linear relationship between the efflux velocity and the multiplication of the rotational speed, propeller diameter and the square root of thrust coefficient. The linear relationship of these two terms is connected by an efflux coefficient and the value of this efflux coefficient reduced when the blade number increased.
Resumo:
The identification of chemical mechanism that can exhibit oscillatory phenomena in reaction networks are currently of intense interest. In particular, the parametric question of the existence of Hopf bifurcations has gained increasing popularity due to its relation to the oscillatory behavior around the fixed points. However, the detection of oscillations in high-dimensional systems and systems with constraints by the available symbolic methods has proven to be difficult. The development of new efficient methods are therefore required to tackle the complexity caused by the high-dimensionality and non-linearity of these systems. In this thesis, we mainly present efficient algorithmic methods to detect Hopf bifurcation fixed points in (bio)-chemical reaction networks with symbolic rate constants, thereby yielding information about their oscillatory behavior of the networks. The methods use the representations of the systems on convex coordinates that arise from stoichiometric network analysis. One of the methods called HoCoQ reduces the problem of determining the existence of Hopf bifurcation fixed points to a first-order formula over the ordered field of the reals that can then be solved using computational-logic packages. The second method called HoCaT uses ideas from tropical geometry to formulate a more efficient method that is incomplete in theory but worked very well for the attempted high-dimensional models involving more than 20 chemical species. The instability of reaction networks may lead to the oscillatory behaviour. Therefore, we investigate some criterions for their stability using convex coordinates and quantifier elimination techniques. We also study Muldowney's extension of the classical Bendixson-Dulac criterion for excluding periodic orbits to higher dimensions for polynomial vector fields and we discuss the use of simple conservation constraints and the use of parametric constraints for describing simple convex polytopes on which periodic orbits can be excluded by Muldowney's criteria. All developed algorithms have been integrated into a common software framework called PoCaB (platform to explore bio- chemical reaction networks by algebraic methods) allowing for automated computation workflows from the problem descriptions. PoCaB also contains a database for the algebraic entities computed from the models of chemical reaction networks.
Resumo:
The time discretization in weather and climate models introduces truncation errors that limit the accuracy of the simulations. Recent work has yielded a method for reducing the amplitude errors in leapfrog integrations from first-order to fifth-order. This improvement is achieved by replacing the Robert--Asselin filter with the RAW filter and using a linear combination of the unfiltered and filtered states to compute the tendency term. The purpose of the present paper is to apply the composite-tendency RAW-filtered leapfrog scheme to semi-implicit integrations. A theoretical analysis shows that the stability and accuracy are unaffected by the introduction of the implicitly treated mode. The scheme is tested in semi-implicit numerical integrations in both a simple nonlinear stiff system and a medium-complexity atmospheric general circulation model, and yields substantial improvements in both cases. We conclude that the composite-tendency RAW-filtered leapfrog scheme is suitable for use in semi-implicit integrations.
Resumo:
Timediscretization in weatherandclimate modelsintroduces truncation errors that limit the accuracy of the simulations. Recent work has yielded a method for reducing the amplitude errors in leap-frog integrations from first-order to fifth-order.This improvement is achieved by replacing the Robert–Asselin filter with the Robert–Asselin–Williams (RAW) filter and using a linear combination of unfiltered and filtered states to compute the tendency term. The purpose of the present article is to apply the composite-tendency RAW-filtered leapfrog scheme to semi-implicit integrations. A theoretical analysis shows that the stability and accuracy are unaffected by the introduction of the implicitly treated mode. The scheme is tested in semi-implicit numerical integrations in both a simple nonlinear stiff system and a medium-complexity atmospheric general circulation model and yields substantial improvements in both cases. We conclude that the composite-tendency RAW-filtered leap-frog scheme is suitable for use in semi-implicit integrations.
Resumo:
The central question for this paper is how to improve the production process by closing the gap between industrial designers and software engineers of television(TV)-based User Interfaces (UI) in an industrial environment. Software engineers are highly interested whether one UI design can be converted into several fully functional UIs for TV products with different screen properties. The aim of the software engineers is to apply automatic layout and scaling in order to speed up and improve the production process. However, the question is whether a UI design lends itself for such automatic layout and scaling. This is investigated by analysing a prototype UI design done by industrial designers. In a first requirements study, industrial designers had created meta-annotations on top of their UI design in order to disclose their design rationale for discussions with software engineers. In a second study, five (out of ten) industrial designers assessed the potential of four different meta-annotation approaches. The question was which annotation method industrial designers would prefer and whether it could satisfy the technical requirements of the software engineering process. One main result is that the industrial designers preferred the method they were already familiar with, which therefore seems to be the most effective one although the main objective of automatic layout and scaling could still not be achieved.
Resumo:
Differential equations are equations that involve an unknown function and derivatives. Euler's method are efficient methods to yield fairly accurate approximations of the actual solutions. By manipulating such methods, one can find ways to provide good approximations compared to the exact solution of parabolic partial differential equations and nonlinear parabolic differential equations.
Resumo:
Thesis (M.S.)--University of Illinois, 1970.