943 resultados para Semi-automated road extraction


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a dynamic programming approach for semi-automated road extraction from medium-and high-resolution images. This method is a modified version of a pre-existing dynamic programming method for road extraction from low-resolution images. The basic assumption of this pre-existing method is that roads manifest as lines in low-resolution images (pixel footprint> 2 m) and as such can be modeled and extracted as linear features. On the other hand, roads manifest as ribbon features in medium- and high-resolution images (pixel footprint ≤ 2 m) and, as a result, the focus of road extraction becomes the road centerlines. The original method can not accurately extract road centerlines from medium- and high- resolution images. In view of this, we propose a modification of the merit function of the original approach, which is carried out by a constraint function embedding road edge properties. Experimental results demonstrated the modified algorithm's potential in extracting road centerlines from medium- and high-resolution images.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Road features extraction from remote sensed imagery has been a long-term topic of great interest within the photogrammetry and remote sensing communities for over three decades. The majority of the early work only focused on linear feature detection approaches, with restrictive assumption on image resolution and road appearance. The widely available of high resolution digital aerial images makes it possible to extract sub-road features, e.g. road pavement markings. In this paper, we will focus on the automatic extraction of road lane markings, which are required by various lane-based vehicle applications, such as, autonomous vehicle navigation, and lane departure warning. The proposed approach consists of three phases: i) road centerline extraction from low resolution image, ii) road surface detection in the original image, and iii) pavement marking extraction on the generated road surface. The proposed method was tested on the aerial imagery dataset of the Bruce Highway, Queensland, and the results demonstrate the efficiency of our approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ongoing research at Boston University has produced computational models of biological vision and learning that embody a growing corpus of scientific data and predictions. Vision models perform long-range grouping and figure/ground segmentation, and memory models create attentionally controlled recognition codes that intrinsically cornbine botton-up activation and top-down learned expectations. These two streams of research form the foundation of novel dynamically integrated systems for image understanding. Simulations using multispectral images illustrate road completion across occlusions in a cluttered scene and information fusion from incorrect labels that are simultaneously inconsistent and correct. The CNS Vision and Technology Labs (cns.bu.edulvisionlab and cns.bu.edu/techlab) are further integrating science and technology through analysis, testing, and development of cognitive and neural models for large-scale applications, complemented by software specification and code distribution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Single particle analysis (SPA) coupled with high-resolution electron cryo-microscopy is emerging as a powerful technique for the structure determination of membrane protein complexes and soluble macromolecular assemblies. Current estimates suggest that ∼104–105 particle projections are required to attain a 3 Å resolution 3D reconstruction (symmetry dependent). Selecting this number of molecular projections differing in size, shape and symmetry is a rate-limiting step for the automation of 3D image reconstruction. Here, we present SwarmPS, a feature rich GUI based software package to manage large scale, semi-automated particle picking projects. The software provides cross-correlation and edge-detection algorithms. Algorithm-specific parameters are transparently and automatically determined through user interaction with the image, rather than by trial and error. Other features include multiple image handling (∼102), local and global particle selection options, interactive image freezing, automatic particle centering, and full manual override to correct false positives and negatives. SwarmPS is user friendly, flexible, extensible, fast, and capable of exporting boxed out projection images, or particle coordinates, compatible with downstream image processing suites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper discusses the following key messages. Taxonomy is (and taxonomists are) more important than ever in times of global change. Taxonomic endeavour is not occurring fast enough: in 250 years since the creation of the Linnean Systema Naturae, only about 20% of Earth's species have been named. We need fundamental changes to the taxonomic process and paradigm to increase taxonomic productivity by orders of magnitude. Currently, taxonomic productivity is limited principally by the rate at which we capture and manage morphological information to enable species discovery. Many recent (and welcomed) initiatives in managing and delivering biodiversity information and accelerating the taxonomic process do not address this bottleneck. Development of computational image analysis and feature extraction methods is a crucial missing capacity needed to enable taxonomists to overcome the taxonomic impediment in a meaningful time frame. Copyright © 2009 Magnolia Press.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Environmental sensors collect massive amounts of audio data. This thesis investigates computational methods to support human analysts in identifying faunal vocalisations from that audio. A series of experiments was conducted to trial the effectiveness of novel user interfaces. This research examines the rapid scanning of spectrograms, decision support tools for users, and cleaning methods for folksonomies. Together, these investigations demonstrate that providing computational support to human analysts increases their efficiency and accuracy; this allows bioacoustics projects to efficiently utilise their valuable human analysts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper the approach for automatic road extraction for an urban region using structural, spectral and geometric characteristics of roads has been presented. Roads have been extracted based on two levels: Pre-processing and road extraction methods. Initially, the image is pre-processed to improve the tolerance by reducing the clutter (that mostly represents the buildings, parking lots, vegetation regions and other open spaces). The road segments are then extracted using Texture Progressive Analysis (TPA) and Normalized cut algorithm. The TPA technique uses binary segmentation based on three levels of texture statistical evaluation to extract road segments where as, Normalizedcut method for road extraction is a graph based method that generates optimal partition of road segments. The performance evaluation (quality measures) for road extraction using TPA and normalized cut method is compared. Thus the experimental result show that normalized cut method is efficient in extracting road segments in urban region from high resolution satellite image.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Analysis of high resolution satellite images has been an important research topic for urban analysis. One of the important features of urban areas in urban analysis is the automatic road network extraction. Two approaches for road extraction based on Level Set and Mean Shift methods are proposed. From an original image it is difficult and computationally expensive to extract roads due to presences of other road-like features with straight edges. The image is preprocessed to improve the tolerance by reducing the noise (the buildings, parking lots, vegetation regions and other open spaces) and roads are first extracted as elongated regions, nonlinear noise segments are removed using a median filter (based on the fact that road networks constitute large number of small linear structures). Then road extraction is performed using Level Set and Mean Shift method. Finally the accuracy for the road extracted images is evaluated based on quality measures. The 1m resolution IKONOS data has been used for the experiment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a GPU implementation of normalized cuts for road extraction problem using panchromatic satellite imagery. The roads have been extracted in three stages namely pre-processing, image segmentation and post-processing. Initially, the image is pre-processed to improve the tolerance by reducing the clutter (that mostly represents the buildings, vegetation,. and fallow regions). The road regions are then extracted using the normalized cuts algorithm. Normalized cuts algorithm is a graph-based partitioning `approach whose focus lies in extracting the global impression (perceptual grouping) of an image rather than local features. For the segmented image, post-processing is carried out using morphological operations - erosion and dilation. Finally, the road extracted image is overlaid on the original image. Here, a GPGPU (General Purpose Graphical Processing Unit) approach has been adopted to implement the same algorithm on the GPU for fast processing. A performance comparison of this proposed GPU implementation of normalized cuts algorithm with the earlier algorithm (CPU implementation) is presented. From the results, we conclude that the computational improvement in terms of time as the size of image increases for the proposed GPU implementation of normalized cuts. Also, a qualitative and quantitative assessment of the segmentation results has been projected.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Clinical microscopy is a versatile diagnostic platform used for diagnosis of a multitude of diseases. In the recent past, many microfluidics based point-of-care diagnostic devices have been developed, which serve as alternatives to microscopy. However, these point-of-care devices are not as multi-functional and versatile as clinical microscopy. With the use of custom designed optics and microfluidics, we have developed a versatile microscopy-based cellular diagnostic platform, which can be used at the point of care. The microscopy platform presented here is capable of detecting infections of very low parasitemia level (in a very small quantity of sample), without the use of any additional computational hardware. Such a cost-effective and portable diagnostic device, would greatly impact the quality of health care available to people living in rural locations of the world. Apart from clinical diagnostics, it's applicability to field research in environmental microbiology has also been outlined. (C) 2015 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quantitative analysis of penetrative deformation in sedimentary rocks of fold and thrust belts has largely been carried out using clast based strain analysis techniques. These methods analyse the geometric deviations from an original state that populations of clasts, or strain markers, have undergone. The characterisation of these geometric changes, or strain, in the early stages of rock deformation is not entirely straight forward. This is in part due to the paucity of information on the original state of the strain markers, but also the uncertainty of the relative rheological properties of the strain markers and their matrix during deformation, as well as the interaction of two competing fabrics, such as bedding and cleavage. Furthermore one of the single largest setbacks for accurate strain analysis has been associated with the methods themselves, they are traditionally time consuming, labour intensive and results can vary between users. A suite of semi-automated techniques have been tested and found to work very well, but in low strain environments the problems discussed above persist. Additionally these techniques have been compared to Anisotropy of Magnetic Susceptibility (AMS) analyses, which is a particularly sensitive tool for the characterisation of low strain in sedimentary lithologies.