985 resultados para Semantic features matrix
Resumo:
The study of semantic memory in patients with Alzheimer's disease (AD) has raised important questions about the representation of conceptual knowledge in the human brain. It is still unknown whether semantic memory impairments are caused by localized damage to specialized regions or by diffuse damage to distributed representations within nonspecialized brain areas. To our knowledge, there have been no direct correlations of neuroimaging of in vivo brain function in AD with performance on tasks differentially addressing visual and functional knowledge of living and nonliving concepts. We used a semantic verification task and resting 18-fluorodeoxyglucose positron emission tomography in a group of mild to moderate AD patients to investigate this issue. The four task conditions required semantic knowledge of (1) visual, (2) functional properties of living objects, and (3) visual or (4) functional properties of nonliving objects. Visual property verification of living objects was significantly correlated with left posterior fusiform gyrus metabolism (Brodmann's area [BA] 37/19). Effects of visual and functional property verification for non-living objects largely overlapped in the left anterior temporal (BA 38/20) and bilateral premotor areas (BA 6), with the visual condition extending more into left lateral precentral areas. There were no associations with functional property verification for living concepts. Our results provide strong support for anatomically separable representations of living and nonliving concepts, as well as visual feature knowledge of living objects, and against distributed accounts of semantic memory that view visual and functional features of living and nonliving objects as distributed across a common set of brain areas.
Resumo:
This paper reports on the further results of the ongoing research analyzing the impact of a range of commonly used statistical and semantic features in the context of extractive text summarization. The features experimented with include word frequency, inverse sentence and term frequencies, stopwords filtering, word senses, resolved anaphora and textual entailment. The obtained results demonstrate the relative importance of each feature and the limitations of the tools available. It has been shown that the inverse sentence frequency combined with the term frequency yields almost the same results as the latter combined with stopwords filtering that in its turn proved to be a highly competitive baseline. To improve the suboptimal results of anaphora resolution, the system was extended with the second anaphora resolution module. The present paper also describes the first attempts of the internal document data representation.
Resumo:
In recent years the technological world has grown by incorporating billions of small sensing devices, collecting and sharing real-world information. As the number of such devices grows, it becomes increasingly difficult to manage all these new information sources. There is no uniform way to share, process and understand context information. In previous publications we discussed efficient ways to organize context information that is independent of structure and representation. However, our previous solution suffers from semantic sensitivity. In this paper we review semantic methods that can be used to minimize this issue, and propose an unsupervised semantic similarity solution that combines distributional profiles with public web services. Our solution was evaluated against Miller-Charles dataset, achieving a correlation of 0.6.
Resumo:
This paper presents a study made in a field poorly explored in the Portuguese language – modality and its automatic tagging. Our main goal was to find a set of attributes for the creation of automatic tag- gers with improved performance over the bag-of-words (bow) approach. The performance was measured using precision, recall and F1. Because it is a relatively unexplored field, the study covers the creation of the corpus (composed by eleven verbs), the use of a parser to extract syntac- tic and semantic information from the sentences and a machine learning approach to identify modality values. Based on three different sets of attributes – from trigger itself and the trigger’s path (from the parse tree) and context – the system creates a tagger for each verb achiev- ing (in almost every verb) an improvement in F1 when compared to the traditional bow approach.
Resumo:
El treball té com a objectiu l'estudi de les propietats semàntiques d'un grup de verbs de desplaçament i els seus corresponents arguments. La informació sobre el tipus de complement que demana cada verb és important de cara a conèixer l'estructura sintàctica de la frase i oferir solucions pràctiques en tasques de Processament del Llenguatge Natural. L'anàlisi se centrarà en els verbs conduir, navegar i volar, a partir dels sentits bàsics que el Diccionari d'ús dels verbs catalans (DUVC) descriu per a cadascun d'aquests verbs i de les seves restriccions selectives. Comprovarem, mitjançant un centenar de frases extretes del Corpus d'Ús del Català a la Web de la Universitat Pompeu Fabra i del Corpus Textual Informatitzat de la Llengua Catalana de l'Institut d'Estudis Catalans, si en la llengua es donen només els sentits i usos descrits en el DUVC i quins són els més freqüents. Finalment, descriurem els noms que fan de nucli dels arguments en termes de trets semàntics.
Resumo:
Repetition of environmental sounds, like their visual counterparts, can facilitate behavior and modulate neural responses, exemplifying plasticity in how auditory objects are represented or accessed. It remains controversial whether such repetition priming/suppression involves solely plasticity based on acoustic features and/or also access to semantic features. To evaluate contributions of physical and semantic features in eliciting repetition-induced plasticity, the present functional magnetic resonance imaging (fMRI) study repeated either identical or different exemplars of the initially presented object; reasoning that identical exemplars share both physical and semantic features, whereas different exemplars share only semantic features. Participants performed a living/man-made categorization task while being scanned at 3T. Repeated stimuli of both types significantly facilitated reaction times versus initial presentations, demonstrating perceptual and semantic repetition priming. There was also repetition suppression of fMRI activity within overlapping temporal, premotor, and prefrontal regions of the auditory "what" pathway. Importantly, the magnitude of suppression effects was equivalent for both physically identical and semantically related exemplars. That the degree of repetition suppression was irrespective of whether or not both perceptual and semantic information was repeated is suggestive of a degree of acoustically independent semantic analysis in how object representations are maintained and retrieved.
Resumo:
An exam of the occurrences of the PRESENT PERFECT in Englishwas made in such a way as to establish the prevailing semantic features ofthis verbal form. I t was verified up to what an extent the meaning of thePERFECTIVE thus characterized is expressed in the corresponding Portuguesesentences in the PRETÉRITO PERFEITO. It was found that in Portuguesethe verbal inflexion itself characterizes in a much smaller degree the PERFECTIVE ASPECT.
Resumo:
There is an increasing tendency of turning the current power grid, essentially unaware of variations in electricity demand and scattered energy sources, into something capable of bringing a degree of intelligence by using tools strongly related to information and communication technologies, thus turning into the so-called Smart Grid. In fact, it could be considered that the Smart Grid is an extensive smart system that spreads throughout any area where power is required, providing a significant optimization in energy generation, storage and consumption. However, the information that must be treated to accomplish these tasks is challenging both in terms of complexity (semantic features, distributed systems, suitable hardware) and quantity (consumption data, generation data, forecasting functionalities, service reporting), since the different energy beneficiaries are prone to be heterogeneous, as the nature of their own activities is. This paper presents a proposal on how to deal with these issues by using a semantic middleware architecture that integrates different components focused on specific tasks, and how it is used to handle information at every level and satisfy end user requests.
Resumo:
Sentiment analysis over Twitter offer organisations a fast and effective way to monitor the publics' feelings towards their brand, business, directors, etc. A wide range of features and methods for training sentiment classifiers for Twitter datasets have been researched in recent years with varying results. In this paper, we introduce a novel approach of adding semantics as additional features into the training set for sentiment analysis. For each extracted entity (e.g. iPhone) from tweets, we add its semantic concept (e.g. Apple product) as an additional feature, and measure the correlation of the representative concept with negative/positive sentiment. We apply this approach to predict sentiment for three different Twitter datasets. Our results show an average increase of F harmonic accuracy score for identifying both negative and positive sentiment of around 6.5% and 4.8% over the baselines of unigrams and part-of-speech features respectively. We also compare against an approach based on sentiment-bearing topic analysis, and find that semantic features produce better Recall and F score when classifying negative sentiment, and better Precision with lower Recall and F score in positive sentiment classification.
Resumo:
DBpedia has become one of the major sources of structured knowledge extracted from Wikipedia. Such structures gradually re-shape the representation of Topics as new events relevant to such topics emerge. Such changes make evident the continuous evolution of topic representations and introduce new challenges to supervised topic classification tasks, since labelled data can rapidly become outdated. Here we analyse topic changes in DBpedia and propose the use of semantic features as a more stable representation of a topic. Our experiments show promising results in understanding how the relevance of features to a topic changes over time.
Resumo:
Short text messages a.k.a Microposts (e.g. Tweets) have proven to be an effective channel for revealing information about trends and events, ranging from those related to Disaster (e.g. hurricane Sandy) to those related to Violence (e.g. Egyptian revolution). Being informed about such events as they occur could be extremely important to authorities and emergency professionals by allowing such parties to immediately respond. In this work we study the problem of topic classification (TC) of Microposts, which aims to automatically classify short messages based on the subject(s) discussed in them. The accurate TC of Microposts however is a challenging task since the limited number of tokens in a post often implies a lack of sufficient contextual information. In order to provide contextual information to Microposts, we present and evaluate several graph structures surrounding concepts present in linked knowledge sources (KSs). Traditional TC techniques enrich the content of Microposts with features extracted only from the Microposts content. In contrast our approach relies on the generation of different weighted semantic meta-graphs extracted from linked KSs. We introduce a new semantic graph, called category meta-graph. This novel meta-graph provides a more fine grained categorisation of concepts providing a set of novel semantic features. Our findings show that such category meta-graph features effectively improve the performance of a topic classifier of Microposts. Furthermore our goal is also to understand which semantic feature contributes to the performance of a topic classifier. For this reason we propose an approach for automatic estimation of accuracy loss of a topic classifier on new, unseen Microposts. We introduce and evaluate novel topic similarity measures, which capture the similarity between the KS documents and Microposts at a conceptual level, considering the enriched representation of these documents. Extensive evaluation in the context of Emergency Response (ER) and Violence Detection (VD) revealed that our approach outperforms previous approaches using single KS without linked data and Twitter data only up to 31.4% in terms of F1 measure. Our main findings indicate that the new category graph contains useful information for TC and achieves comparable results to previously used semantic graphs. Furthermore our results also indicate that the accuracy of a topic classifier can be accurately predicted using the enhanced text representation, outperforming previous approaches considering content-based similarity measures. © 2014 Elsevier B.V. All rights reserved.
Resumo:
Social media has become an effective channel for communicating both trends and public opinion on current events. However the automatic topic classification of social media content pose various challenges. Topic classification is a common technique used for automatically capturing themes that emerge from social media streams. However, such techniques are sensitive to the evolution of topics when new event-dependent vocabularies start to emerge (e.g., Crimea becoming relevant to War Conflict during the Ukraine crisis in 2014). Therefore, traditional supervised classification methods which rely on labelled data could rapidly become outdated. In this paper we propose a novel transfer learning approach to address the classification task of new data when the only available labelled data belong to a previous epoch. This approach relies on the incorporation of knowledge from DBpedia graphs. Our findings show promising results in understanding how features age, and how semantic features can support the evolution of topic classifiers.
Resumo:
Objective
Pedestrian detection under video surveillance systems has always been a hot topic in computer vision research. These systems are widely used in train stations, airports, large commercial plazas, and other public places. However, pedestrian detection remains difficult because of complex backgrounds. Given its development in recent years, the visual attention mechanism has attracted increasing attention in object detection and tracking research, and previous studies have achieved substantial progress and breakthroughs. We propose a novel pedestrian detection method based on the semantic features under the visual attention mechanism.
Method
The proposed semantic feature-based visual attention model is a spatial-temporal model that consists of two parts: the static visual attention model and the motion visual attention model. The static visual attention model in the spatial domain is constructed by combining bottom-up with top-down attention guidance. Based on the characteristics of pedestrians, the bottom-up visual attention model of Itti is improved by intensifying the orientation vectors of elementary visual features to make the visual saliency map suitable for pedestrian detection. In terms of pedestrian attributes, skin color is selected as a semantic feature for pedestrian detection. The regional and Gaussian models are adopted to construct the skin color model. Skin feature-based visual attention guidance is then proposed to complete the top-down process. The bottom-up and top-down visual attentions are linearly combined using the proper weights obtained from experiments to construct the static visual attention model in the spatial domain. The spatial-temporal visual attention model is then constructed via the motion features in the temporal domain. Based on the static visual attention model in the spatial domain, the frame difference method is combined with optical flowing to detect motion vectors. Filtering is applied to process the field of motion vectors. The saliency of motion vectors can be evaluated via motion entropy to make the selected motion feature more suitable for the spatial-temporal visual attention model.
Result
Standard datasets and practical videos are selected for the experiments. The experiments are performed on a MATLAB R2012a platform. The experimental results show that our spatial-temporal visual attention model demonstrates favorable robustness under various scenes, including indoor train station surveillance videos and outdoor scenes with swaying leaves. Our proposed model outperforms the visual attention model of Itti, the graph-based visual saliency model, the phase spectrum of quaternion Fourier transform model, and the motion channel model of Liu in terms of pedestrian detection. The proposed model achieves a 93% accuracy rate on the test video.
Conclusion
This paper proposes a novel pedestrian method based on the visual attention mechanism. A spatial-temporal visual attention model that uses low-level and semantic features is proposed to calculate the saliency map. Based on this model, the pedestrian targets can be detected through focus of attention shifts. The experimental results verify the effectiveness of the proposed attention model for detecting pedestrians.
Resumo:
This paper describes the emergence of new functional items in the Mauritian Creole noun phrase, following the collapse of the French determiner system when superstrate and substrate came into contact. The aim of the paper is to show how the new language strived to express the universal semantic contrasts of (in)definiteness and singular vs. plural. The process of grammaticalization of new functional items in the determiner system was accompanied by changes in the syntax from French to creole. An analysis within Chomsky’s Minimalist framework (1995, 2000, 2001) suggests that these changes were driven by the need to map semantic features onto the syntax.