934 resultados para Semantic Text Analysis
Resumo:
The given work is devoted to development of the computer-aided system of semantic text analysis of a technical specification. The purpose of this work is to increase efficiency of software engineering based on automation of semantic text analysis of a technical specification. In work it is offered and investigated the model of the analysis of the text of the technical project is submitted, the attribute grammar of a technical specification, intended for formalization of limited Russian is constructed with the purpose of analysis of offers of text of a technical specification, style features of the technical project as class of documents are considered, recommendations on preparation of text of a technical specification for the automated processing are formulated. The computer-aided system of semantic text analysis of a technical specification is considered. This system consists of the following subsystems: preliminary text processing, the syntactic and semantic analysis and construction of software models, storage of documents and interface.
Resumo:
The given work is devoted to development of the computer-aided system of semantic text analysis of a technical specification. The purpose of this work is to increase efficiency of software engineering based on automation of semantic text analysis of a technical specification. In work it is offered and investigated a technique of the text analysis of a technical specification is submitted, the expanded fuzzy attribute grammar of a technical specification, intended for formalization of limited Russian language is constructed with the purpose of analysis of offers of text of a technical specification, style features of the technical specification as class of documents are considered, recommendations on preparation of text of a technical specification for the automated processing are formulated. The computer-aided system of semantic text analysis of a technical specification is considered. This system consist of the following subsystems: preliminary text processing, the syntactic and semantic analysis and construction of software models, storage of documents and interface.
Resumo:
It is a big challenge to guarantee the quality of discovered relevance features in text documents for describing user preferences because of the large number of terms, patterns, and noise. Most existing popular text mining and classification methods have adopted term-based approaches. However, they have all suffered from the problems of polysemy and synonymy. Over the years, people have often held the hypothesis that pattern-based methods should perform better than term- based ones in describing user preferences, but many experiments do not support this hypothesis. This research presents a promising method, Relevance Feature Discovery (RFD), for solving this challenging issue. It discovers both positive and negative patterns in text documents as high-level features in order to accurately weight low-level features (terms) based on their specificity and their distributions in the high-level features. The thesis also introduces an adaptive model (called ARFD) to enhance the exibility of using RFD in adaptive environment. ARFD automatically updates the system's knowledge based on a sliding window over new incoming feedback documents. It can efficiently decide which incoming documents can bring in new knowledge into the system. Substantial experiments using the proposed models on Reuters Corpus Volume 1 and TREC topics show that the proposed models significantly outperform both the state-of-the-art term-based methods underpinned by Okapi BM25, Rocchio or Support Vector Machine and other pattern-based methods.
Resumo:
Background: A major challenge for assessing students’ conceptual understanding of STEM subjects is the capacity of assessment tools to reliably and robustly evaluate student thinking and reasoning. Multiple-choice tests are typically used to assess student learning and are designed to include distractors that can indicate students’ incomplete understanding of a topic or concept based on which distractor the student selects. However, these tests fail to provide the critical information uncovering the how and why of students’ reasoning for their multiple-choice selections. Open-ended or structured response questions are one method for capturing higher level thinking, but are often costly in terms of time and attention to properly assess student responses. Purpose: The goal of this study is to evaluate methods for automatically assessing open-ended responses, e.g. students’ written explanations and reasoning for multiple-choice selections. Design/Method: We incorporated an open response component for an online signals and systems multiple-choice test to capture written explanations of students’ selections. The effectiveness of an automated approach for identifying and assessing student conceptual understanding was evaluated by comparing results of lexical analysis software packages (Leximancer and NVivo) to expert human analysis of student responses. In order to understand and delineate the process for effectively analysing text provided by students, the researchers evaluated strengths and weakness for both the human and automated approaches. Results: Human and automated analyses revealed both correct and incorrect associations for certain conceptual areas. For some questions, that were not anticipated or included in the distractor selections, showing how multiple-choice questions alone fail to capture the comprehensive picture of student understanding. The comparison of textual analysis methods revealed the capability of automated lexical analysis software to assist in the identification of concepts and their relationships for large textual data sets. We also identified several challenges to using automated analysis as well as the manual and computer-assisted analysis. Conclusions: This study highlighted the usefulness incorporating and analysing students’ reasoning or explanations in understanding how students think about certain conceptual ideas. The ultimate value of automating the evaluation of written explanations is that it can be applied more frequently and at various stages of instruction to formatively evaluate conceptual understanding and engage students in reflective
Resumo:
Assessing students’ conceptual understanding of technical content is important for instructors as well as students to learn content and apply knowledge in various contexts. Concept inventories that identify possible misconceptions through validated multiple-choice questions are helpful in identifying a misconception that may exist, but do not provide a meaningful assessment of why they exist or the nature of the students’ understanding. We conducted a case study with undergraduate students in an electrical engineering course by testing a validated multiple-choice response concept inventory that we augmented with a component for students to provide written explanations for their multiple-choice selection. Results revealed that correctly chosen multiple-choice selections did not always match correct conceptual understanding for question testing a specific concept. The addition of a text-response to multiple-choice concept inventory questions provided an enhanced and meaningful assessment of students’ conceptual understanding and highlighted variables associated with current concept inventories or multiple choice questions.
Resumo:
A key argument for modeling knowledge in ontologies is the easy re-use and re-engineering of the knowledge. However, beside consistency checking, current ontology engineering tools provide only basic functionalities for analyzing ontologies. Since ontologies can be considered as (labeled, directed) graphs, graph analysis techniques are a suitable answer for this need. Graph analysis has been performed by sociologists for over 60 years, and resulted in the vivid research area of Social Network Analysis (SNA). While social network structures in general currently receive high attention in the Semantic Web community, there are only very few SNA applications up to now, and virtually none for analyzing the structure of ontologies. We illustrate in this paper the benefits of applying SNA to ontologies and the Semantic Web, and discuss which research topics arise on the edge between the two areas. In particular, we discuss how different notions of centrality describe the core content and structure of an ontology. From the rather simple notion of degree centrality over betweenness centrality to the more complex eigenvector centrality based on Hermitian matrices, we illustrate the insights these measures provide on two ontologies, which are different in purpose, scope, and size.
Resumo:
In numerosi campi scientici l'analisi di network complessi ha portato molte recenti scoperte: in questa tesi abbiamo sperimentato questo approccio sul linguaggio umano, in particolare quello scritto, dove le parole non interagiscono in modo casuale. Abbiamo quindi inizialmente presentato misure capaci di estrapolare importanti strutture topologiche dai newtork linguistici(Degree, Strength, Entropia, . . .) ed esaminato il software usato per rappresentare e visualizzare i grafi (Gephi). In seguito abbiamo analizzato le differenti proprietà statistiche di uno stesso testo in varie sue forme (shuffolato, senza stopwords e senza parole con bassa frequenza): il nostro database contiene cinque libri di cinque autori vissuti nel XIX secolo. Abbiamo infine mostrato come certe misure siano importanti per distinguere un testo reale dalle sue versioni modificate e perché la distribuzione del Degree di un testo normale e di uno shuffolato abbiano lo stesso andamento. Questi risultati potranno essere utili nella sempre più attiva analisi di fenomeni linguistici come l'autorship attribution e il riconoscimento di testi shuffolati.
Resumo:
Information is nowadays a key resource: machine learning and data mining techniques have been developed to extract high-level information from great amounts of data. As most data comes in form of unstructured text in natural languages, research on text mining is currently very active and dealing with practical problems. Among these, text categorization deals with the automatic organization of large quantities of documents in priorly defined taxonomies of topic categories, possibly arranged in large hierarchies. In commonly proposed machine learning approaches, classifiers are automatically trained from pre-labeled documents: they can perform very accurate classification, but often require a consistent training set and notable computational effort. Methods for cross-domain text categorization have been proposed, allowing to leverage a set of labeled documents of one domain to classify those of another one. Most methods use advanced statistical techniques, usually involving tuning of parameters. A first contribution presented here is a method based on nearest centroid classification, where profiles of categories are generated from the known domain and then iteratively adapted to the unknown one. Despite being conceptually simple and having easily tuned parameters, this method achieves state-of-the-art accuracy in most benchmark datasets with fast running times. A second, deeper contribution involves the design of a domain-independent model to distinguish the degree and type of relatedness between arbitrary documents and topics, inferred from the different types of semantic relationships between respective representative words, identified by specific search algorithms. The application of this model is tested on both flat and hierarchical text categorization, where it potentially allows the efficient addition of new categories during classification. Results show that classification accuracy still requires improvements, but models generated from one domain are shown to be effectively able to be reused in a different one.
Resumo:
Sentiment analysis over Twitter offer organisations a fast and effective way to monitor the publics' feelings towards their brand, business, directors, etc. A wide range of features and methods for training sentiment classifiers for Twitter datasets have been researched in recent years with varying results. In this paper, we introduce a novel approach of adding semantics as additional features into the training set for sentiment analysis. For each extracted entity (e.g. iPhone) from tweets, we add its semantic concept (e.g. Apple product) as an additional feature, and measure the correlation of the representative concept with negative/positive sentiment. We apply this approach to predict sentiment for three different Twitter datasets. Our results show an average increase of F harmonic accuracy score for identifying both negative and positive sentiment of around 6.5% and 4.8% over the baselines of unigrams and part-of-speech features respectively. We also compare against an approach based on sentiment-bearing topic analysis, and find that semantic features produce better Recall and F score when classifying negative sentiment, and better Precision with lower Recall and F score in positive sentiment classification.
Resumo:
Lexicon-based approaches to Twitter sentiment analysis are gaining much popularity due to their simplicity, domain independence, and relatively good performance. These approaches rely on sentiment lexicons, where a collection of words are marked with fixed sentiment polarities. However, words' sentiment orientation (positive, neural, negative) and/or sentiment strengths could change depending on context and targeted entities. In this paper we present SentiCircle; a novel lexicon-based approach that takes into account the contextual and conceptual semantics of words when calculating their sentiment orientation and strength in Twitter. We evaluate our approach on three Twitter datasets using three different sentiment lexicons. Results show that our approach significantly outperforms two lexicon baselines. Results are competitive but inconclusive when comparing to state-of-art SentiStrength, and vary from one dataset to another. SentiCircle outperforms SentiStrength in accuracy on average, but falls marginally behind in F-measure. © 2014 Springer International Publishing.
Resumo:
A tárgyalófelek elé kitett mobiltelefon alkalmazása előrejelzi a beszélgetőpartnerek versenyképességét a versenyképesség-mutatók alapján, javaslatokat adva a tárgyalás további menetére. Ez a vízió nyilván még futurisztikus, ám a csúcsvezetői nyilatkozatok rejtett szövegtartalma alapján következtetéseket levonni a képviselt szervezetek versenyképességi orientációira – ez már ma lehetőség. A GLOBE-projekt kultúrakutatási módszertanával, valamint szövegelemzési módszerekkel sikerült kimutatni a versenyképességet előrejelző hatalmi távolság és az intézményi kollektivizmus szövegbeli jeleit. Mindez eszközt jelenthet egyebek mellett a szervezetfejlesztéssel, hírszerzéssel, HR-gazdálkodással foglalkozó szakembereknek is. _______ The use of the mobile telephones laid in front of the negotiators during their conversations forecasts their indicators of competitiveness and gives suggestions for the further course of negotiation. This is obviously a futuristic vision, but drawing conclusions from the hidden content of top management narratives concerning the competitive cultural orientations of the represented organizations is a possibility that is already available. Using the culture research methodology of the GLOBE project as well as text analysis methods, it was possible to reveal narrative patterns both of the power distance, forecasting competitiveness, and of institutional collectivism. These findings may be useful tools for professionals, among others of organizational development, intelligence service and HR management.
Resumo:
Introduction: According to the Declaration of Helsinki and other guidelines, clinical studies should be approved by a research ethics committee and seek valid informed consent from the participants. Editors of medical journals are encouraged by the ICMJE and COPE to include requirements for these principles in the journal's instructions for authors. This study assessed the editorial policies of psychiatry journals regarding ethics review and informed consent. Methods and Findings: The information given on ethics review and informed consent and the mentioning of the ICMJE and COPE recommendations were assessed within author's instructions and online submission procedures of all 123 eligible psychiatry journals. While 54% and 58% of editorial policies required ethics review and informed consent, only 14% and 19% demanded the reporting of these issues in the manuscript. The TOP-10 psychiatry journals (ranked by impact factor) performed similarly in this regard. Conclusions: Only every second psychiatry journal adheres to the ICMJE's recommendation to inform authors about requirements for informed consent and ethics review. Furthermore, we argue that even the ICMJE's recommendations in this regard are insufficient, at least for ethically challenging clinical trials. At the same time, ideal scientific design sometimes even needs to be compromised for ethical reasons. We suggest that features of clinical studies that make them morally controversial, but not necessarily unethical, are analogous to methodological limitations and should thus be reported explicitly. Editorial policies as well as reporting guidelines such as CONSORT should be extended to support a meaningful reporting of ethical research.
Resumo:
In this thesis we are going to talk about technologies which allow us to approach sentiment analysis on newspapers articles. The final goal of this work is to help social scholars to do content analysis on big corpora of texts in a faster way thanks to the support of automatic text classification.
Resumo:
We explored the impact of a degraded semantic system on lexical, morphological and syntactic complexity in language production. We analysed transcripts from connected speech samples from eight patients with semantic dementia (SD) and eight age-matched healthy speakers. The frequency distributions of nouns and verbs were compared for hand-scored data and data extracted using text-analysis software. Lexical measures showed the predicted pattern for nouns and verbs in hand-scored data, and for nouns in software-extracted data, with fewer low frequency items in the speech of the patients relative to controls. The distribution of complex morpho-syntactic forms for the SD group showed a reduced range, with fewer constructions that required multiple auxiliaries and inflections. Finally, the distribution of syntactic constructions also differed between groups, with a pattern that reflects the patients’ characteristic anomia and constraints on morpho-syntactic complexity. The data are in line with previous findings of an absence of gross syntactic errors or violations in SD speech. Alterations in the distributions of morphology and syntax, however, support constraint satisfaction models of speech production in which there is no hard boundary between lexical retrieval and grammatical encoding.
Resumo:
Grigorij Kreidlin (Russia). A Comparative Study of Two Semantic Systems: Body Russian and Russian Phraseology. Mr. Kreidlin teaches in the Department of Theoretical and Applied Linguistics of the State University of Humanities in Moscow and worked on this project from August 1996 to July 1998. The classical approach to non-verbal and verbal oral communication is based on a traditional separation of body and mind. Linguists studied words and phrasemes, the products of mind activities, while gestures, facial expressions, postures and other forms of body language were left to anthropologists, psychologists, physiologists, and indeed to anyone but linguists. Only recently have linguists begun to turn their attention to gestures and semiotic and cognitive paradigms are now appearing that raise the question of designing an integral model for the unified description of non-verbal and verbal communicative behaviour. This project attempted to elaborate lexical and semantic fragments of such a model, producing a co-ordinated semantic description of the main Russian gestures (including gestures proper, postures and facial expressions) and their natural language analogues. The concept of emblematic gestures and gestural phrasemes and of their semantic links permitted an appropriate description of the transformation of a body as a purely physical substance into a body as a carrier of essential attributes of Russian culture - the semiotic process called the culturalisation of the human body. Here the human body embodies a system of cultural values and displays them in a text within the area of phraseology and some other important language domains. The goal of this research was to develop a theory that would account for the fundamental peculiarities of the process. The model proposed is based on the unified lexicographic representation of verbal and non-verbal units in the Dictionary of Russian Gestures, which the Mr. Kreidlin had earlier complied in collaboration with a group of his students. The Dictionary was originally oriented only towards reflecting how the lexical competence of Russian body language is represented in the Russian mind. Now a special type of phraseological zone has been designed to reflect explicitly semantic relationships between the gestures in the entries and phrasemes and to provide the necessary information for a detailed description of these. All the definitions, rules of usage and the established correlations are written in a semantic meta-language. Several classes of Russian gestural phrasemes were identified, including those phrasemes and idioms with semantic definitions close to those of the corresponding gestures, those phraseological units that have lost touch with the related gestures (although etymologically they are derived from gestures that have gone out of use), and phrasemes and idioms which have semantic traces or reflexes inherited from the meaning of the related gestures. The basic assumptions and practical considerations underlying the work were as follows. (1) To compare meanings one has to be able to state them. To state the meaning of a gesture or a phraseological expression, one needs a formal semantic meta-language of propositional character that represents the cognitive and mental aspects of the codes. (2) The semantic contrastive analysis of any semiotic codes used in person-to-person communication also requires a single semantic meta-language, i.e. a formal semantic language of description,. This language must be as linguistically and culturally independent as possible and yet must be open to interpretation through any culture and code. Another possible method of conducting comparative verbal-non-verbal semantic research is to work with different semantic meta-languages and semantic nets and to learn how to combine them, translate from one to another, etc. in order to reach a common basis for the subsequent comparison of units. (3) The practical work in defining phraseological units and organising the phraseological zone in the Dictionary of Russian Gestures unexpectedly showed that semantic links between gestures and gestural phrasemes are reflected not only in common semantic elements and syntactic structure of semantic propositions, but also in general and partial cognitive operations that are made over semantic definitions. (4) In comparative semantic analysis one should take into account different values and roles of inner form and image components in the semantic representation of non-verbal and verbal units. (5) For the most part, gestural phrasemes are direct semantic derivatives of gestures. The cognitive and formal techniques can be regarded as typological features for the future functional-semantic classification of gestural phrasemes: two phrasemes whose meaning can be obtained by the same cognitive or purely syntactic operations (or types of operations) over the meanings of the corresponding gestures, belong by definition to one and the same class. The nature of many cognitive operations has not been studied well so far, but the first steps towards its comprehension and description have been taken. The research identified 25 logically possible classes of relationships between a gesture and a gestural phraseme. The calculation is based on theoretically possible formal (set-theory) correlations between signifiers and signified of the non-verbal and verbal units. However, in order to examine which of them are realised in practice a complete semantic and lexicographic description of all (not only central) everyday emblems and gestural phrasemes is required and this unfortunately does not yet exist. Mr. Kreidlin suggests that the results of the comparative analysis of verbal and non-verbal units could also be used in other research areas such as the lexicography of emotions.