976 resultados para Semantic Search
Resumo:
Consider a person searching electronic health records, a search for the term ‘cracked skull’ should return documents that contain the term ‘cranium fracture’. A information retrieval systems is required that matches concepts, not just keywords. Further more, determining relevance of a query to a document requires inference – its not simply matching concepts. For example a document containing ‘dialysis machine’ should align with a query for ‘kidney disease’. Collectively we describe this problem as the ‘semantic gap’ – the difference between the raw medical data and the way a human interprets it. This paper presents an approach to semantic search of health records by combining two previous approaches: an ontological approach using the SNOMED CT medical ontology; and a distributional approach using semantic space vector space models. Our approach will be applied to a specific problem in health informatics: the matching of electronic patient records to clinical trials.
Resumo:
For more than a decade research in the field of context aware computing has aimed to find ways to exploit situational information that can be detected by mobile computing and sensor technologies. The goal is to provide people with new and improved applications, enhanced functionality and better use experience (Dey, 2001). Early applications focused on representing or computing on physical parameters, such as showing your location and the location of people or things around you. Such applications might show where the next bus is, which of your friends is in the vicinity and so on. With the advent of social networking software and microblogging sites such as Facebook and Twitter, recommender systems and so on context-aware computing is moving towards mining the social web in order to provide better representations and understanding of context, including social context. In this paper we begin by recapping different theoretical framings of context. We then discuss the problem of context- aware computing from a design perspective.
Resumo:
Background This paper presents a novel approach to searching electronic medical records that is based on concept matching rather than keyword matching. Aim The concept-based approach is intended to overcome specific challenges we identified in searching medical records. Method Queries and documents were transformed from their term-based originals into medical concepts as defined by the SNOMED-CT ontology. Results Evaluation on a real-world collection of medical records showed our concept-based approach outperformed a keyword baseline by 25% in Mean Average Precision. Conclusion The concept-based approach provides a framework for further development of inference based search systems for dealing with medical data.
Resumo:
This thesis developed new search engine models that elicit the meaning behind the words found in documents and queries, rather than simply matching keywords. These new models were applied to searching medical records: an area where search is particularly challenging yet can have significant benefits to our society.
Resumo:
This paper describes the implementation of a semantic web search engine on conversation styled transcripts. Our choice of data is Hansard, a publicly available conversation style transcript of parliamentary debates. The current search engine implementation on Hansard is limited to running search queries based on keywords or phrases hence lacks the ability to make semantic inferences from user queries. By making use of knowledge such as the relationship between members of parliament, constituencies, terms of office, as well as topics of debates the search results can be improved in terms of both relevance and coverage. Our contribution is not algorithmic instead we describe how we exploit a collection of external data sources, ontologies, semantic web vocabularies and named entity extraction in the analysis of underlying semantics of user queries as well as the semantic enrichment of the search index thereby improving the quality of results.
Resumo:
This paper describes an infrastructure for the automated evaluation of semantic technologies and, in particular, semantic search technologies. For this purpose, we present an evaluation framework which follows a service-oriented approach for evaluating semantic technologies and uses the Business Process Execution Language (BPEL) to define evaluation workflows that can be executed by process engines. This framework supports a variety of evaluations, from different semantic areas, including search, and is extendible to new evaluations. We show how BPEL addresses this diversity as well as how it is used to solve specific challenges such as heterogeneity, error handling and reuse
Resumo:
Evaluations of semantic search systems are generally small scale and ad hoc due to the lack of appropriate resources such as test collections, agreed performance criteria and independent judgements of performance. By analysing our work in building and evaluating semantic tools over the last five years, we conclude that the growth of the semantic web led to an improvement in the available resources and the consequent robustness of performance assessments. We propose two directions for continuing evaluation work: the development of extensible evaluation benchmarks and the use of logging parameters for evaluating individual components of search systems.
Resumo:
While semantic search technologies have been proven to work well in specific domains, they still have to confront two main challenges to scale up to the Web in its entirety. In this work we address this issue with a novel semantic search system that a) provides the user with the capability to query Semantic Web information using natural language, by means of an ontology-based Question Answering (QA) system [14] and b) complements the specific answers retrieved during the QA process with a ranked list of documents from the Web [3]. Our results show that ontology-based semantic search capabilities can be used to complement and enhance keyword search technologies.
Resumo:
The goal of semantic search is to improve on traditional search methods by exploiting the semantic metadata. In this paper, we argue that supporting iterative and exploratory search modes is important to the usability of all search systems. We also identify the types of semantic queries the users need to make, the issues concerning the search environment and the problems that are intrinsic to semantic search in particular. We then review the four modes of user interaction in existing semantic search systems, namely keyword-based, form-based, view-based and natural language-based systems. Future development should focus on multimodal search systems, which exploit the advantages of more than one mode of interaction, and on developing the search systems that can search heterogeneous semantic metadata on the open semantic Web.
Resumo:
Formulating complex queries is hard, especially when users cannot understand all the data structures of multiple complex knowledge bases. We see a gap between simplistic but user friendly tools and formal query languages. Building on an example comparison search, we propose an approach in which reusable search components take an intermediary role between the user interface and formal query languages.
Resumo:
The approaches to the analysis of various information resources pertinent to user requirements at a semantic level are determined by the thesauruses of the appropriate subject domains. The algorithms of formation and normalization of the multilinguistic thesaurus, and also methods of their comparison are given.
Resumo:
From a law enforcement standpoint, the ability to search for a person matching a semantic description (i.e. 1.8m tall, red shirt, jeans) is highly desirable. While a significant research effort has focused on person re-detection (the task of identifying a previously observed individual in surveillance video), these techniques require descriptors to be built from existing image or video observations. As such, person re-detection techniques are not suited to situations where footage of the person of interest is not readily available, such as a witness reporting a recent crime. In this paper, we present a novel framework that is able to search for a person based on a semantic description. The proposed approach uses size and colour cues, and does not require a person detection routine to locate people in the scene, improving utility in crowded conditions. The proposed approach is demonstrated with a new database that will be made available to the research community, and we show that the proposed technique is able to correctly localise a person in a video based on a simple semantic description.
Resumo:
Existing semantic search tools have been primarily designed to enhance the performance of traditional search technologies but with little support for ordinary end users who are not necessarily familiar with domain specific semantic data, ontologies, or SQL-like query languages. This paper presents SemSearch, a search engine, which pays special attention to this issue by providing several means to hide the complexity of semantic search from end users and thus make it easy to use and effective.
Resumo:
It is not uncommon to hear a person of interest described by their height, build, and clothing (i.e. type and colour). These semantic descriptions are commonly used by people to describe others, as they are quick to relate and easy to understand. However such queries are not easily utilised within intelligent surveillance systems as they are difficult to transform into a representation that can be searched for automatically in large camera networks. In this paper we propose a novel approach that transforms such a semantic query into an avatar that is searchable within a video stream, and demonstrate state-of-the-art performance for locating a subject in video based on a description.
Resumo:
It is not uncommon to hear a person of interest described by their height, build, and clothing (i.e. type and colour). These semantic descriptions are commonly used by people to describe others, as they are quick to communicate and easy to understand. However such queries are not easily utilised within intelligent video surveillance systems, as they are difficult to transform into a representation that can be utilised by computer vision algorithms. In this paper we propose a novel approach that transforms such a semantic query into an avatar in the form of a channel representation that is searchable within a video stream. We show how spatial, colour and prior information (person shape) can be incorporated into the channel representation to locate a target using a particle-filter like approach. We demonstrate state-of-the-art performance for locating a subject in video based on a description, achieving a relative performance improvement of 46.7% over the baseline. We also apply this approach to person re-detection, and show that the approach can be used to re-detect a person in a video steam without the use of person detection.