988 resultados para Semantic Integration in Water Resources


Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the introduction of the earth observing satellites, remote sensing has become an important tool in analyzing the Earth's surface characteristics, and hence in supplying valuable information necessary for the hydrologic analysis. Due to their capability to capture the spatial variations in the hydro-meteorological variables and frequent temporal resolution sufficient to represent the dynamics of the hydrologic processes, remote sensing techniques have significantly changed the water resources assessment and management methodologies. Remote sensing techniques have been widely used to delineate the surface water bodies, estimate meteorological variables like temperature and precipitation, estimate hydrological state variables like soil moisture and land surface characteristics, and to estimate fluxes such as evapotranspiration. Today, near-real time monitoring of flood, drought events, and irrigation management are possible with the help of high resolution satellite data. This paper gives a brief overview of the potential applications of remote sensing in water resources.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Water is the very essential livelihood for mankind. The United Nations suggest that each person needs 20-50 litres of water a day to ensure basic needs of drinking, cooking and cleaning. It was also endorsed by the Indian National Water Policy 2002, with the provision that adequate safe drinking water facilities should be provided to the entire population both in urban and in rural areas. About 1.42 million rural habitations in India are affected by chemical contamination. The provision of clean drinking water has been given priority in the Constitution of India, in Article 47 conferring the duty of providing clean drinking water and improving public health standards to the State. Excessive dependence of ground water results in depletion of ground water, water contamination and water borne diseases. Thus, access to safe and reliable water supply is one of the serious concerns in rural water supply programme. Though government takes certain serious steps in addressing the drinking water issues in rural areas, still there is a huge gap between demand and supply. The Draft National Water Policy 2012 also states that Water quality and quantity are interlinked and need to be managed in an integrated manner and with Stakeholder participation. Water Resources Management aims at optimizing the available natural water flows, including surface water and groundwater, to satisfy competing needs. The World Bank also emphasizes on managing water resources, strengthening institutions, identifying and implementing measures of improving water governance and increasing the efficiency of water use. Therefore stakeholders’ participation is viewed important in managing water resources at different levels and range. This paper attempts to reflect up on portray the drinking water issues in rural India, and highlights the significance of Integrated Water Resource Management as the significant part of Millennium Development Goals, and Stakeholders’ participation in water resources management.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper critically explores the politics that mediate the use of environmental science assessments as the basis of resource management policy. Drawing on recent literature in the political ecology tradition that has emphasised the politicised nature of the production and use of scientific knowledge in environmental management, the paper analyses a hydrological assessment in a small river basin in Chile, undertaken in response to concerns over the possible overexploitation of groundwater resources. The case study illustrates the limitations of an approach based predominantly on hydrogeological modelling to ascertain the effects of increased groundwater abstraction. In particular, it identifies the subjective ways in which the assessment was interpreted and used by the state water resources agency to underpin water allocation decisions in accordance with its own interests, and the role that a desocialised assessment played in reproducing unequal patterns of resource use and configuring uneven waterscapes. Nevertheless, as Chile’s ‘neoliberal’ political-economic framework privileges the role of science and technocracy, producing other forms of environmental knowledge to complement environmental science is likely to be contentious. In conclusion, the paper considers the potential of mobilising the concept of the hydrosocial cycle to further critically engage with environmental science.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interoperability of water quality data depends on the use of common models, schemas and vocabularies. However, terms are usually collected during different activities and projects in isolation of one another, resulting in vocabularies that have the same scope being represented with different terms, using different formats and formalisms, and published in various access methods. Significantly, most water quality vocabularies conflate multiple concepts in a single term, e.g. quantity kind, units of measure, substance or taxon, medium and procedure. This bundles information associated with separate elements from the OGC Observations and Measurements (O&M) model into a single slot. We have developed a water quality vocabulary, formalized using RDF, and published as Linked Data. The terms were extracted from existing water quality vocabularies. The observable property model is inspired by O&M but aligned with existing ontologies. The core is an OWL ontology that extends the QUDT ontology for Unit and QuantityKind definitions. We add classes to generalize the QuantityKind model, and properties for explicit description of the conflated concepts. The key elements are defined to be sub-classes or sub-properties of SKOS elements, which enables a SKOS view to be published through standard vocabulary APIs, alongside the full view. QUDT terms are re-used where possible, supplemented with additional Unit and QuantityKind entries required for water quality. Along with items from separate vocabularies developed for objects, media, and procedures, these are linked into definitions in the actual observable property vocabulary. Definitions of objects related to chemical substances are linked to items from the Chemical Entities of Biological Interest (ChEBI) ontology. Mappings to other vocabularies, such as DBPedia, are in separately maintained files. By formalizing the model for observable properties, and clearly labelling the separate concerns, water quality observations from different sources may be more easily merged and also transformed to O&M for cross-domain applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Observational data encodes values of properties associated with a feature of interest, estimated by a specified procedure. For water the properties are physical parameters like level, volume, flow and pressure, and concentrations and counts of chemicals, substances and organisms. Water property vocabularies have been assembled at project, agency and jurisdictional level. Organizations such as EPA, USGS, CEH, GA and BoM maintain vocabularies for internal use, and may make them available externally as text files. BODC and MMI have harvested many water vocabularies alongside others of interest in their domain, formalized the content using SKOS, and published them through web interfaces. Scope is highly variable both within and between vocabularies. Individual items may conflate multiple concerns (e.g. property, instrument, statistical procedure, units). There is significant duplication between vocabularies. Semantic web technologies provide the opportunity both to publish vocabularies more effectively, and achieve harmonization to support greater interoperability between datasets. - Models for vocabulary items (property, substance/taxon, process, unit-of-measure, etc) may be formalized OWL ontologies, supporting semantic relations between items in related vocabularies; - By specializing the ontology elements from SKOS concepts and properties, diverse vocabularies may be published through a common interface; - Properties from standard vocabularies (e.g. OWL, SKOS, PROV-O and VAEM) support mappings between vocabularies having a similar scope - Existing items from various sources may be assembled into new virtual vocabularies However, there are a number of challenges: - use of standard properties such as sameAs/exactMatch/equivalentClass require reasoning support; - items have been conceptualised as both classes and individuals, complicating the mapping mechanics; - re-use of items across vocabularies may conflict with expectations concerning URI patterns; - versioning complicates cross-references and re-use. This presentation will discuss ways to harness semantic web technologies to publish harmonized vocabularies, and will summarise how many of the challenges may be addressed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Includes bibliography

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Item 1005-C

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Shipping list no.: 88-370-P (pt. 2).