779 resultados para Self-learning


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new self-learning algorithm for accelerated dynamics, reconnaissance metadynamics, is proposed that is able to work with a very large number of collective coordinates. Acceleration of the dynamics is achieved by constructing a bias potential in terms of a patchwork of one-dimensional, locally valid collective coordinates. These collective coordinates are obtained from trajectory analyses so that they adapt to any new features encountered during the simulation. We show how this methodology can be used to enhance sampling in real chemical systems citing examples both from the physics of clusters and from the biological sciences.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Economic and environmental load dispatch aims to determine the amount of electricity generated from power plants to meet load demand while minimizing fossil fuel costs and air pollution emissions subject to operational and licensing requirements. These two scheduling problems are commonly formulated with non-smooth cost functions respectively considering various effects and constraints, such as the valve point effect, power balance and ramp rate limits. The expected increase in plug-in electric vehicles is likely to see a significant impact on the power system due to high charging power consumption and significant uncertainty in charging times. In this paper, multiple electric vehicle charging profiles are comparatively integrated into a 24-hour load demand in an economic and environment dispatch model. Self-learning teaching-learning based optimization (TLBO) is employed to solve the non-convex non-linear dispatch problems. Numerical results on well-known benchmark functions, as well as test systems with different scales of generation units show the significance of the new scheduling method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the main purposes of building a battery model is for monitoring and control during battery charging/discharging as well as for estimating key factors of batteries such as the state of charge for electric vehicles. However, the model based on the electrochemical reactions within the batteries is highly complex and difficult to compute using conventional approaches. Radial basis function (RBF) neural networks have been widely used to model complex systems for estimation and control purpose, while the optimization of both the linear and non-linear parameters in the RBF model remains a key issue. A recently proposed meta-heuristic algorithm named Teaching-Learning-Based Optimization (TLBO) is free of presetting algorithm parameters and performs well in non-linear optimization. In this paper, a novel self-learning TLBO based RBF model is proposed for modelling electric vehicle batteries using RBF neural networks. The modelling approach has been applied to two battery testing data sets and compared with some other RBF based battery models, the training and validation results confirm the efficacy of the proposed method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Foundation construction process has been an important key point in a successful construction engineering. The frequency of using diaphragm wall construction method among many deep excavation construction methods in Taiwan is the highest in the world. The traditional view of managing diaphragm wall unit in the sequencing of construction activities is to establish each phase of the sequencing of construction activities by heuristics. However, it conflicts final phase of engineering construction with unit construction and effects planning construction time. In order to avoid this kind of situation, we use management of science in the study of diaphragm wall unit construction to formulate multi-objective combinational optimization problem. Because the characteristic (belong to NP-Complete problem) of problem mathematic model is multi-objective and combining explosive, it is advised that using the 2-type Self-Learning Neural Network (SLNN) to solve the N=12, 24, 36 of diaphragm wall unit in the sequencing of construction activities program problem. In order to compare the liability of the results, this study will use random researching method in comparison with the SLNN. It is found that the testing result of SLNN is superior to random researching method in whether solution-quality or Solving-efficiency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A self-learning simulated annealing algorithm is developed by combining the characteristics of simulated annealing and domain elimination methods. The algorithm is validated by using a standard mathematical function and by optimizing the end region of a practical power transformer. The numerical results show that the CPU time required by the proposed method is about one third of that using conventional simulated annealing algorithm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aims: to compare the performance of undergraduate students concerning semi-implanted central venous catheter dressing in a simulator, with the assistance of a tutor or of a self-learning tutorial. Method: Randomized controlled trial. The sample consisted of 35 undergraduate nursing students, who were divided into two groups after attending an open dialogue presentation class and watching a video. One group undertook the procedure practice with a tutor and the other with the assistance of a self-learning tutorial. Results: in relation to cognitive knowledge, the two groups had lower performance in the pre-test than in the post-test. The group that received assistance from a tutor performed better in the practical assessment. Conclusion: the simulation undertaken with the assistance of a tutor showed to be the most effective learning strategy when compared to the simulation using a self-learning tutorial. Advances in nursing simulation technology are of upmost importance and the role of the tutor in the learning process should be highlighted, taking into consideration the role this professional plays in knowledge acquisition and in the development of critical-reflexive thoughts and attitudes. (ClinicalTrials.gov Identifier: NCT 01614314).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Location-awareness indoors will be an inseparable feature of mobile services/applications in future wireless networks. Its current ubiquitous availability is still obstructed by technological challenges and privacy issues. We propose an innovative approach towards the concept of indoor positioning with main goal to develop a system that is self-learning and able to adapt to various radio propagation environments. The approach combines estimation of propagation conditions, subsequent appropriate channel modelling and optimisation feedback to the used positioning algorithm. Main advantages of the proposal are decreased system set-up effort, automatic re-calibration and increased precision.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A good and early fault detection and isolation system along with efficient alarm management and fine sensor validation systems are very important in today¿s complex process plants, specially in terms of safety enhancement and costs reduction. This paper presents a methodology for fault characterization. This is a self-learning approach developed in two phases. An initial, learning phase, where the simulation of process units, without and with different faults, will let the system (in an automated way) to detect the key variables that characterize the faults. This will be used in a second (on line) phase, where these key variables will be monitored in order to diagnose possible faults. Using this scheme the faults will be diagnosed and isolated in an early stage where the fault still has not turned into a failure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the educational project described in this paper, new virtual 3D didactical contents have been developed to achieve specific outcomes, within the frame of a new methodology oriented to objectives of the European Higher Education Area directives. The motivation of the project was to serve as a new assessment method, to create a link between new programs of study with the older ones. In this project, new rubrics have been developed to be employed as an objective method of evaluation of specific and transversal outcomes, to accomplish the certification criteria of institutions like ABET (Accreditation Board for Engineering and Technology).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the School of Mines of the Technical University of Madrid (UPM) the first course of different degrees has been implemented and adapted to the European Higher Educational Area (EHEA). In all of the degrees there is a first semester course which gathers all the contents of basic mechanics: from the first kinematics concepts to the rigid solid plane motion Before the Bologna process took place, the authors had established the final assessment of the theoretical contents through open questions of theoretical-practical character In the present work, the elaboration of a wide database containing theoretical-practical questions that students can access on line is presented. The questions are divided in thirteen different questionnaires composed of a number of questions randomly chosen from a certain group in the database. Each group corresponds to a certain learning objective that the student knows. After answering the questionnaire and checking the grade assigned according to the performance of the student, the pupils can see the correct response displayed on the screen and widely explained by the professors. This represents a 10% of the final grade. As the student can access the questionnaires as many times as they want, the main goal is the self-assessment of each learning objective and therefore, getting the students involved in their own learning process so they can decide how much time they need to acquire the required level.