967 resultados para Self-adapting applications


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Applications that exploit contextual information in order to adapt their behaviour to dynamically changing operating environments and user requirements are increasingly being explored as part of the vision of pervasive or ubiquitous computing. Despite recent advances in infrastructure to support these applications through the acquisition, interpretation and dissemination of context data from sensors, they remain prohibitively difficult to develop and have made little penetration beyond the laboratory. This situation persists largely due to a lack of appropriately high-level abstractions for describing, reasoning about and exploiting context information as a basis for adaptation. In this paper, we present our efforts to address this challenge, focusing on our novel approach involving the use of preference information as a basis for making flexible adaptation decisions. We also discuss our experiences in applying our conceptual and software frameworks for context and preference modelling to a case study involving the development of an adaptive communication application.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The singular properties of hydrogenated amorphous carbon (a-C:H) thin filmsdeposited by pulsed DC plasma enhanced chemical vapor deposition (PECVD), such as hardness and wear resistance, make it suitable as protective coating with low surface energy for self-assembly applications. In this paper, we designed fluorine-containing a-C:H (a-C:H:F) nanostructured surfaces and we characterized them for self-assembly applications. Sub-micron patterns were generated on silicon through laser lithography while contact angle measurements, nanotribometer, atomic force microscopy (AFM), and scanning electron microscopy (SEM) were used to characterize the surface. a-C:H:F properties on lithographied surfaces such as hydrophobicity and friction were improved with the proper relative quantity of CH4 and CHF3 during deposition, resulting in ultrahydrophobic samples and low friction coefficients. Furthermore, these properties were enhanced along the direction of the lithographypatterns (in-plane anisotropy). Finally, self-assembly properties were tested with silicananoparticles, which were successfully assembled in linear arrays following the generated patterns. Among the main applications, these surfaces could be suitable as particle filter selector and cell colony substrate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dynamic, unanticipated adaptation of running systems is of interest in a variety of situations, ranging from functional upgrades to on-the-fly debugging or monitoring of critical applications. In this paper we study a particular form of computational reflection, called unanticipated partial behavioral reflection, which is particularly well-suited for unanticipated adaptation of real-world systems. Our proposal combines the dynamicity of unanticipated reflection, i.e. reflection that does not require preparation of the code of any sort, and the selectivity and efficiency of partial behavioral reflection. First, we propose unanticipated partial behavioral reflection which enables the developer to precisely select the required reifications, to flexibly engineer the metalevel and to introduce the meta behavior dynamically. Second, we present a system supporting unanticipated partial behavioral reflection in Squeak Smalltalk, called Geppetto, and illustrate its use with a concrete example of a web application. Benchmarks validate the applicability of our proposal as an extension to the standard reflective abilities of Smalltalk.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research focuses on automatically adapting a search engine size in response to fluctuations in query workload. Deploying a search engine in an Infrastructure as a Service (IaaS) cloud facilitates allocating or deallocating computer resources to or from the engine. Our solution is to contribute an adaptive search engine that will repeatedly re-evaluate its load and, when appropriate, switch over to a dierent number of active processors. We focus on three aspects and break them out into three sub-problems as follows: Continually determining the Number of Processors (CNP), New Grouping Problem (NGP) and Regrouping Order Problem (ROP). CNP means that (in the light of the changes in the query workload in the search engine) there is a problem of determining the ideal number of processors p active at any given time to use in the search engine and we call this problem CNP. NGP happens when changes in the number of processors are determined and it must also be determined which groups of search data will be distributed across the processors. ROP is how to redistribute this data onto processors while keeping the engine responsive and while also minimising the switchover time and the incurred network load. We propose solutions for these sub-problems. For NGP we propose an algorithm for incrementally adjusting the index to t the varying number of virtual machines. For ROP we present an ecient method for redistributing data among processors while keeping the search engine responsive. Regarding the solution for CNP, we propose an algorithm determining the new size of the search engine by re-evaluating its load. We tested the solution performance using a custom-build prototype search engine deployed in the Amazon EC2 cloud. Our experiments show that when we compare our NGP solution with computing the index from scratch, the incremental algorithm speeds up the index computation 2{10 times while maintaining a similar search performance. The chosen redistribution method is 25% to 50% faster than other methods and reduces the network load around by 30%. For CNP we present a deterministic algorithm that shows a good ability to determine a new size of search engine. When combined, these algorithms give an adapting algorithm that is able to adjust the search engine size with a variable workload.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Self-adaptive software provides a profound solution for adapting applications to changing contexts in dynamic and heterogeneous environments. Having emerged from Autonomic Computing, it incorporates fully autonomous decision making based on predefined structural and behavioural models. The most common approach for architectural runtime adaptation is the MAPE-K adaptation loop implementing an external adaptation manager without manual user control. However, it has turned out that adaptation behaviour lacks acceptance if it does not correspond to a user’s expectations – particularly for Ubiquitous Computing scenarios with user interaction. Adaptations can be irritating and distracting if they are not appropriate for a certain situation. In general, uncertainty during development and at run-time causes problems with users being outside the adaptation loop. In a literature study, we analyse publications about self-adaptive software research. The results show a discrepancy between the motivated application domains, the maturity of examples, and the quality of evaluations on the one hand and the provided solutions on the other hand. Only few publications analysed the impact of their work on the user, but many employ user-oriented examples for motivation and demonstration. To incorporate the user within the adaptation loop and to deal with uncertainty, our proposed solutions enable user participation for interactive selfadaptive software while at the same time maintaining the benefits of intelligent autonomous behaviour. We define three dimensions of user participation, namely temporal, behavioural, and structural user participation. This dissertation contributes solutions for user participation in the temporal and behavioural dimension. The temporal dimension addresses the moment of adaptation which is classically determined by the self-adaptive system. We provide mechanisms allowing users to influence or to define the moment of adaptation. With our solution, users can have full control over the moment of adaptation or the self-adaptive software considers the user’s situation more appropriately. The behavioural dimension addresses the actual adaptation logic and the resulting run-time behaviour. Application behaviour is established during development and does not necessarily match the run-time expectations. Our contributions are three distinct solutions which allow users to make changes to the application’s runtime behaviour: dynamic utility functions, fuzzy-based reasoning, and learning-based reasoning. The foundation of our work is a notification and feedback solution that improves intelligibility and controllability of self-adaptive applications by implementing a bi-directional communication between self-adaptive software and the user. The different mechanisms from the temporal and behavioural participation dimension require the notification and feedback solution to inform users on adaptation actions and to provide a mechanism to influence adaptations. Case studies show the feasibility of the developed solutions. Moreover, an extensive user study with 62 participants was conducted to evaluate the impact of notifications before and after adaptations. Although the study revealed that there is no preference for a particular notification design, participants clearly appreciated intelligibility and controllability over autonomous adaptations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is great demand for easily-accessible, user-friendly dietary self-management applications. Yet accurate, fully-automatic estimation of nutritional intake using computer vision methods remains an open research problem. One key element of this problem is the volume estimation, which can be computed from 3D models obtained using multi-view geometry. The paper presents a computational system for volume estimation based on the processing of two meal images. A 3D model of the served meal is reconstructed using the acquired images and the volume is computed from the shape. The algorithm was tested on food models (dummy foods) with known volume and on real served food. Volume accuracy was in the order of 90 %, while the total execution time was below 15 seconds per image pair. The proposed system combines simple and computational affordable methods for 3D reconstruction, remained stable throughout the experiments, operates in near real time, and places minimum constraints on users.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper proposes the use of the q-Gaussian mutation with self-adaptation of the shape of the mutation distribution in evolutionary algorithms. The shape of the q-Gaussian mutation distribution is controlled by a real parameter q. In the proposed method, the real parameter q of the q-Gaussian mutation is encoded in the chromosome of individuals and hence is allowed to evolve during the evolutionary process. In order to test the new mutation operator, evolution strategy and evolutionary programming algorithms with self-adapted q-Gaussian mutation generated from anisotropic and isotropic distributions are presented. The theoretical analysis of the q-Gaussian mutation is also provided. In the experimental study, the q-Gaussian mutation is compared to Gaussian and Cauchy mutations in the optimization of a set of test functions. Experimental results show the efficiency of the proposed method of self-adapting the mutation distribution in evolutionary algorithms.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The present thesis develops from the point of view of titania sol-gel chemistry and an attempt is made to address the modification of the process for better photoactive titania by selective doping and also demonstration of utilization of the process for the preparation of supported membranes and self cleaning films.A general introduction to nanomaterials, nanocrystalline titania and sol-gel chemistry are presented in the first chapter. A brief and updated literature review on sol-gel titania, with special emphasis on catalytic and photocatalytic properties and anatase to rutile transformation are covered. Based on critical assessment of the reported information the present research problem has been defined.The second chapter describes a new aqueous sol-gel method for the preparation of nanocrystalline titania using titanyl sulphate as precursor. This approach is novel since no earlier work has been reported in the same lines proposed here. The sol-gel process has been followed at each step using particle size, zeta potential measurements on the sol and thermal analysis of the resultant gel. The prepared powders were then characterized using X-ray diffraction, FTIR, BET surface area analysis and transmission electron microscopy.The third chapter presents a detailed discussion on the physico-chemical characterization of the aqueous sol-gel derived doped titania. The effect of dopants such as tantalum, gadolinium and ytterbium on the anatase to rutile phase transformation, surface area as well as their influence on photoactivity is also included. The fourth chapter demonstrates application of the aqueous sol-gel method in developing titania coatings on porous alumina substrates for controlling the poresize for use as membrane elements in ultrafiltration. Thin coatings having ~50 nm thickness and transparency of ~90% developed on glass surface were tested successfully for self cleaning applications.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The quality of information provision influences considerably knowledge construction driven by individual users’ needs. In the design of information systems for e-learning, personal information requirements should be incorporated to determine a selection of suitable learning content, instructive sequencing for learning content, and effective presentation of learning content. This is considered as an important part of instructional design for a personalised information package. The current research reveals that there is a lack of means by which individual users’ information requirements can be effectively incorporated to support personal knowledge construction. This paper presents a method which enables an articulation of users’ requirements based on the rooted learning theories and requirements engineering paradigms. The user’s information requirements can be systematically encapsulated in a user profile (i.e. user requirements space), and further transformed onto instructional design specifications (i.e. information space). These two spaces allow the discovering of information requirements patterns for self-maintaining and self-adapting personalisation that enhance experience in the knowledge construction process.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The wide use of e-technologies represents a great opportunity for underserved segments of the population, especially with the aim of reintegrating excluded individuals back into society through education. This is particularly true for people with different types of disabilities who may have difficulties while attending traditional on-site learning programs that are typically based on printed learning resources. The creation and provision of accessible e-learning contents may therefore become a key factor in enabling people with different access needs to enjoy quality learning experiences and services. Another e-learning challenge is represented by m-learning (which stands for mobile learning), which is emerging as a consequence of mobile terminals diffusion and provides the opportunity to browse didactical materials everywhere, outside places that are traditionally devoted to education. Both such situations share the need to access materials in limited conditions and collide with the growing use of rich media in didactical contents, which are designed to be enjoyed without any restriction. Nowadays, Web-based teaching makes great use of multimedia technologies, ranging from Flash animations to prerecorded video-lectures. Rich media in e-learning can offer significant potential in enhancing the learning environment, through helping to increase access to education, enhance the learning experience and support multiple learning styles. Moreover, they can often be used to improve the structure of Web-based courses. These highly variegated and structured contents may significantly improve the quality and the effectiveness of educational activities for learners. For example, rich media contents allow us to describe complex concepts and process flows. Audio and video elements may be utilized to add a “human touch” to distance-learning courses. Finally, real lectures may be recorded and distributed to integrate or enrich on line materials. A confirmation of the advantages of these approaches can be seen in the exponential growth of video-lecture availability on the net, due to the ease of recording and delivering activities which take place in a traditional classroom. Furthermore, the wide use of assistive technologies for learners with disabilities injects new life into e-learning systems. E-learning allows distance and flexible educational activities, thus helping disabled learners to access resources which would otherwise present significant barriers for them. For instance, students with visual impairments have difficulties in reading traditional visual materials, deaf learners have trouble in following traditional (spoken) lectures, people with motion disabilities have problems in attending on-site programs. As already mentioned, the use of wireless technologies and pervasive computing may really enhance the educational learner experience by offering mobile e-learning services that can be accessed by handheld devices. This new paradigm of educational content distribution maximizes the benefits for learners since it enables users to overcome constraints imposed by the surrounding environment. While certainly helpful for users without disabilities, we believe that the use of newmobile technologies may also become a fundamental tool for impaired learners, since it frees them from sitting in front of a PC. In this way, educational activities can be enjoyed by all the users, without hindrance, thus increasing the social inclusion of non-typical learners. While the provision of fully accessible and portable video-lectures may be extremely useful for students, it is widely recognized that structuring and managing rich media contents for mobile learning services are complex and expensive tasks. Indeed, major difficulties originate from the basic need to provide a textual equivalent for each media resource composing a rich media Learning Object (LO). Moreover, tests need to be carried out to establish whether a given LO is fully accessible to all kinds of learners. Unfortunately, both these tasks are truly time-consuming processes, depending on the type of contents the teacher is writing and on the authoring tool he/she is using. Due to these difficulties, online LOs are often distributed as partially accessible or totally inaccessible content. Bearing this in mind, this thesis aims to discuss the key issues of a system we have developed to deliver accessible, customized or nomadic learning experiences to learners with different access needs and skills. To reduce the risk of excluding users with particular access capabilities, our system exploits Learning Objects (LOs) which are dynamically adapted and transcoded based on the specific needs of non-typical users and on the barriers that they can encounter in the environment. The basic idea is to dynamically adapt contents, by selecting them from a set of media resources packaged in SCORM-compliant LOs and stored in a self-adapting format. The system schedules and orchestrates a set of transcoding processes based on specific learner needs, so as to produce a customized LO that can be fully enjoyed by any (impaired or mobile) student.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper we propose two cooperation schemes to compose new parallel variants of the Variable Neighborhood Search (VNS). On the one hand, a coarse-grained cooperation scheme is introduced which is well suited for being enhanced with a solution warehouse to store and manage the so far best found solutions and a self-adapting mechanism for the most important search parameters. This makes an a priori parameter tuning obsolete. On the other hand, a fine-grained scheme was designed to reproduce the successful properties of the sequential VNS. In combination with the use of parallel exploration threads all of the best solutions and 11 out of 20 new best solutions for the Multi Depot Vehicle Routing Problem with Time Windows were found.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper proposes the EvoBANE system. EvoBANE automatically generates Bayesian networks for solving special-purpose problems. EvoBANE evolves a population of individuals that codify Bayesian networks until it finds near optimal individual that solves a given classification problem. EvoBANE has the flexibility to modify the constraints that condition the solution search space, self-adapting to the specifications of the problem to be solved. The system extends the GGEAS architecture. GGEAS is a general-purpose grammar-guided evolutionary automatic system, whose modular structure favors its application to the automatic construction of intelligent systems. EvoBANE has been applied to two classification benchmark datasets belonging to different application domains, and statistically compared with a genetic algorithm performing the same tasks. Results show that the proposed system performed better, as it manages different complexity constraints in order to find the simplest solution that best solves every problem.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper surveys some of the fundamental problems in natural language (NL) understanding (syntax, semantics, pragmatics, and discourse) and the current approaches to solving them. Some recent developments in NL processing include increased emphasis on corpus-based rather than example- or intuition-based work, attempts to measure the coverage and effectiveness of NL systems, dealing with discourse and dialogue phenomena, and attempts to use both analytic and stochastic knowledge. Critical areas for the future include grammars that are appropriate to processing large amounts of real language; automatic (or at least semi-automatic) methods for deriving models of syntax, semantics, and pragmatics; self-adapting systems; and integration with speech processing. Of particular importance are techniques that can be tuned to such requirements as full versus partial understanding and spoken language versus text. Portability (the ease with which one can configure an NL system for a particular application) is one of the largest barriers to application of this technology.