971 resultados para Self sustainable agriculture
Resumo:
This paper provides an overview of concepts of sustainable agriculture and possible methods of attaining sustainability of agricultural yields and production. Reasons are given as to why modern industrialised agriculture might be less sustainable in terms of yields than traditional agriculture. The question of whether organic agriculture is likely to be more sustainable than non-organic agriculture is considered as well as organic agriculture’s likely impact on wild biodiversity. The impact of the development of agriculture on wild biodiversity is assessed because some environmentalists see the conservation of wild biodiversity as an important ingredient of sustainable development. However, there is a policy conflict between conservationist groups. Some see intensive agriculture (including silviculture) as favourable to the conservation of wild biodiversity whereas others oppose such production methods as being unfavourable to wild biodiversity conservation. Reasons why modern industrialised agricultural systems are so widely adopted (and continue to be adopted) despite their apparent lack of sustainability are suggested. Market systems may tend to lock producers into unsustainable production methods.
Resumo:
Research was conducted to investigate the potential for ecologically engineering a sustainable wetland ecosystem over pyritic mine tailings to prevent the generation of acid mine drainage. Ecological engineering is technology with the primary goal being the creation of self-sustainable ecological systems. Work involved the design and construction of a pilot-scale wetland system comprising three wetland cells, each covering 100 m2. Approximately forty tonnes of pyritic mine tailings were deposited on the base of the first cell above a synthetic liner, covered with peat, flooded and planted with emergent wetland macrophytes Typha latifolia, Phragmites australis, and Juncus effusus. The second cell was constructed as a conventional free water surface wetland, planted identically, and used as a reference wetland/experimental control. Wetland monitoring to determine long-term sustainability focused on indicators of ecosystem health including ecological, hydrological, physico-chemical, geochemical, and biotic metrics. An integrated assessment was conducted that involved field ecology in addition to ecological risk assessment. The objective of the field ecology study was to use vegetative parameters as ecological indicators for documenting wetlands success or degradation. The goal of the risk assessment was to determine if heavy-metal contamination of the wetland sediments occurred through metal mobilisation from the underlying tailings, and to evaluate if subsequent water column chemistry and biotic metal concentrations were significantly correlated with adverse wetland ecosystem impacts. Data were used to assess heavy metal bioavailability within the system as a function of metal speciation in the wetland sediments. Results indicate hydrology is the most important variable in the design and establishment of the tailings wetland and suggest a wetland cover is an ecologically viable alternative for pyritic tailings which are feasible to flood. Ecological data indicate that in terms of species richness and diversity, the tailings-wetland was exhibiting the ecological characteristics of natural wetlands within two years. Ata indicate that pH and conductivity in the tailings-wetland were not adversely impacted by the acid-generating potential or sulphate concentration of the tailings substrate and its porewater. Similarly, no enhanced seasonal impacts from sulphate or metals in the water column, nor adverse impacts on the final water quality of the outflows, were detected. Mean total metal concentrations in the sediments of the tailings-wetland indicate no significant adverse mobilisation of metals into the peat substrate from the tailings. Correlation analyses indicate a general increase in sediment metal concentration in this wetland with increasing water depth and pH, and a corresponding decrease in the metal concentrations of the water column. Sediment extractions also showed enrichment of Cd, Fe, Pb and Zn in the oxidisable fraction (including sulphides and organic matter) of the tailings-wetland sediments. These data suggest that adsorption and coprecipitation of metals is occurring from the water column of the tailings wetland with organic material at increasing depths under reducing conditions. The long-term control of metal bioavailability in the tailings wetland will likely be related to the presence and continual build-up of organic carbon binding sites in the developing wetland above the tailings. Metal speciation including free-metal ion concentration and the impact of physico-chemical parameters particularly pH and organic matter, were investigated to assess ecotoxicological risk. Results indicate that potentially bioavailable metals (the sum of the exchangeable and reducible fractions) within the tailings wetland are similar to values cited for natural wetlands. Estimated free-metal ion concentrations calculated from geochemical regression models indicate lower free-metal ion concentrations of Cd in the tailings wetland than natural wetlands and slightly higher free-metal ion concentrations of Pb and Zn. Increased concentrations of metals in roots, rhizomes and stems of emergent macrophytes did not occur in the tailings wetland. Even though a substantial number of Typha latifolia plants were found rooting directly into tailings, elevated metals were not found in these plant tissues. Phragmites also did not exhibit elevated metal concentrations in any plant tissues. Typha and Phragmites populations appear to be exhibiting metal-tolerant behaviour. The chemistry of the water column and sediments in Silvermines wetland were also investigated and were much more indicative of a wetland system impacted by heavy metal contamination than the tailings-wetland. Mean Dc, Fe, Mn, Pb and Zn concentrations in the water column and sediments of Silvermines wetlands were substantially higher than in the pilot wetlands and closely approximate concentrations in these matrices contaminated with metals from mining. In addition, mean sulphate concentration in Silvermines wetland was substantially higher and is closer to sulphate concentrations in waters associated with mining. Potentially bioavailable metals were substantially elevated in Silvermines wetland in comparison to the pilot wetlands and higher than those calculated for natural rive sediments. However, Fe oxy-hydroxide concentrations in Silvermines sediments are also much higher than in the pilot wetlands and this significantly impacts the concentration of free-metal ions in the sediment porewater. The free-metal ion concentrations for Pb and Zn indicate that Silvermines wetland is retaining metals and acting as a treatment wetland for drainage emanating from Silvermines tailings dam.
Resumo:
The Leopold Center was created by the Iowa Legislature as part of the Iowa Groundwater Protection Act of 1987. The Leopold Center believes contribute to a healthy ways of thinking about markets for Iowa farmers, a better understanding of local ecosystems, public policies and economic practices, and partnerships with consumers.
Resumo:
The Leopold Center was established by the Iowa Legislature as part of the Iowa Groundwater Protection Act of 1987. Its mandated missions are to identify impacts of agricultural practices, contribute to the development of profitable farming systems that conserve natural resources, and cooperate with Iowa State University Extension to inform the public of new findings.Information for this report was compiled by Leopold Center staff with the help of its researchers and educators who are committed to improving Iowa agriculture and the lives of Iowans.
Resumo:
The Leopold Center was created by the Iowa Legislature as part of the Iowa Groundwater Protection Act of 1987. The Leopold Center believes contribute to a healthy ways of thinking about markets for Iowa farmers, a better understanding of local ecosystems, public policies and economic practices, and partnerships with consumers.
Resumo:
The Leopold Center was created by the Iowa Legislature as part of the Iowa Groundwater Protection Act of 1987. The Leopold Center believes contribute to a healthy ways of thinking about markets for Iowa farmers, a better understanding of local ecosystems, public policies and economic practices, and partnerships with consumers.
Resumo:
The Leopold Center was created by the Iowa Legislature as part of the Iowa Groundwater Protection Act of 1987. The Leopold Center believes contribute to a healthy ways of thinking about markets for Iowa farmers, a better understanding of local ecosystems, public policies and economic practices, and partnerships with consumers.
Resumo:
The Leopold Center was created by the Iowa Legislature as part of the Iowa Groundwater Protection Act of 1987. The Leopold Center believes contribute to a healthy ways of thinking about markets for Iowa farmers, a better understanding of local ecosystems, public policies and economic practices, and partnerships with consumers.
Resumo:
The Leopold Center was created by the Iowa Legislature as part of the Iowa Groundwater Protection Act of 1987. The Leopold Center believes contribute to a healthy ways of thinking about markets for Iowa farmers, a better understanding of local ecosystems, public policies and economic practices, and partnerships with consumers.
Resumo:
The Leopold Center was created by the Iowa Legislature as part of the Iowa Groundwater Protection Act of 1987. The Leopold Center believes contribute to a healthy ways of thinking about markets for Iowa farmers, a better understanding of local ecosystems, public policies and economic practices, and partnerships with consumers.
Resumo:
The Leopold Center was created by the Iowa Legislature as part of the Iowa Groundwater Protection Act of 1987. The Leopold Center believes contribute to a healthy ways of thinking about markets for Iowa farmers, a better understanding of local ecosystems, public policies and economic practices, and partnerships with consumers.
Resumo:
The Leopold Center was created by the Iowa Legislature as part of the Iowa Groundwater Protection Act of 1987. The Leopold Center believes contribute to a healthy ways of thinking about markets for Iowa farmers, a better understanding of local ecosystems, public policies and economic practices, and partnerships with consumers.
Resumo:
The Leopold Center was created by the Iowa Legislature as part of the Iowa Groundwater Protection Act of 1987. The Leopold Center believes contribute to a healthy ways of thinking about markets for Iowa farmers, a better understanding of local ecosystems, public policies and economic practices, and partnerships with consumers.