929 resultados para Self sustainable agriculture


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper contains an analysis of the technical options in agriculture for reducing greenhouse-gas emissions and increasing sinks, arising from three distinct mechanisms: (i) increasing carbon sinks in soil organic matter and above-ground biomass; (ii) avoiding carbon emissions from farms by reducing direct and indirect energy use; and (iii) increasing renewable-energy production from biomass that either substitutes for consumption of fossil fuels or replaces inefficient burning of fuelwood or crop residues, and so avoids carbon emissions, together with use of biogas digesters and improved cookstoves. We then review best-practice sustainable agriculture and renewable-resource-management projects and initiatives in China and India, and analyse the annual net sinks being created by these projects, and the potential market value of the carbon sequestered. We conclude with a summary of the policy and institutional conditions and reforms required for adoption of best sustainability practice in the agricultural sector to achieve the desired reductions in emissions and increases in sinks. A review of 40 sustainable agriculture and renewable-resource-management projects in China and India under the three mechanisms estimated a carbon mitigation potential of 64.8 MtC yr(-1) from 5.5 Mha. The potential income for carbon mitigation is $324 million at $5 per tonne of carbon. The potential exists to increase this by orders of magnitude, and so contribute significantly to greenhouse-gas abatement. Most agricultural mitigation options also provide several ancillary benefits. However, there are many technical, financial, policy, legal and institutional barriers to overcome.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structural, magnetic and dielectric properties of nano zinc ferrite prepared by the propellant chemistry technique are studied. The PXRD measurement at room temperature reveal that the compound is in cubic spinel phase, belong to the space group Fd (3) over barm. The unit cell parameters have been estimated from Rietveld refinement. The calculated force constants from FTIR spectrum corresponding to octahedral and tetrahedral sites at 375 and 542 cm(-1) are 6.61 x 10(2) and 3.77 x 10(2) N m(-1) respectively; these values are slightly higher compared to the other ferrite systems. Magnetic hysteresis and EPR spectra show superparamagnetic property nearly to room temperature due to comparison values between magnetic anisotropy energy and the thermal energy. The calculated values of saturation magnetization, remenant magnetization, coercive field and magnetic moment supports for the existence of multi domain particles in the sample. The temperature dependent magnetic field shows the spin freezing state at 30 K and the blocking temperature at above room temperature. The frequency dependent dielectric interactions show the variation of dielectric constant, dielectric loss and impedance as similar to other ferrite systems. The AC conductivity in the prepared sample is due to the presence of electrons, holes and polarons. The synthesized material is suitable for nano-electronics and biomedical applications. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, we investigate a number of fuel assembly design options for a BWR core operating in a closed self-sustainable Th-233U fuel cycle. The designs rely on axially heterogeneous fuel assembly structure in order to improve fertile to fissile conversion ratio. One of the main assumptions of the current study was to restrict the fuel assembly geometry to a single axial fissile zone "sandwiched" between two fertile blanket zones. The main objective was to study the effect of the most important design parameters, such as dimensions of fissile and fertile zones and average void fraction, on the net breeding of 233U. The main design challenge in this respect is that the fuel breeding potential is at odds with axial power peaking and therefore limits the maximum achievable core power rating. The calculations were performed with BGCore system, which consists of MCNP code coupled with fuel depletion and thermo-hydraulic feedback modules. A single 3-dimensional fuel assembly with reflective radial boundaries was modeled applying simplified restrictions on maximum central line fuel temperature and Critical Power Ratio. It was found that axially heterogeneous fuel assembly design with single fissile zone can potentially achieve net breeding. In this case however, the achievable core power density is roughly one third of the reference BWR core.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reference: ECA: WPW/02/CASE NORTHERN IRELAND W/X0000/e

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper presents the results of studies which investigated farmers’ reasoning and behaviour with regards to the mis‐use of personal protective equipment and pesticide among smallholders in Colombia. First, the research approach is described. In particular, the structured mental models approach and the integrative agent‐centred framework are presented. These approaches permit to understand the farmers’ reasoning and behaviour in a system perspective. Second, the results are summarized. The methods adopted allowed not only for identifying the factors, but also the social dynamics influencing farmers. Finally, suggestions for interventions are provided, which are not limited to a technical fix, but address the underlying social causes of the problem.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Requirements for research, practices and policies affecting soil management in relation to global food security are reviewed. Managing soil organic carbon (C) is central because soil organic matter influences numerous soil properties relevant to ecosystem functioning and crop growth. Even small changes in total C content can have disproportionately large impacts on key soil physical properties. Practices to encourage maintenance of soil C are important for ensuring sustainability of all soil functions. Soil is a major store of C within the biosphere – increases or decreases in this large stock can either mitigate or worsen climate change. Deforestation, conversion of grasslands to arable cropping and drainage of wetlands all cause emission of C; policies and international action to minimise these changes are urgently required. Sequestration of C in soil can contribute to climate change mitigation but the real impact of different options is often misunderstood. Some changes in management that are beneficial for soil C, increase emissions of nitrous oxide (a powerful greenhouse gas) thus cancelling the benefit. Research on soil physical processes and their interactions with roots can lead to improved and novel practices to improve crop access to water and nutrients. Increased understanding of root function has implications for selection and breeding of crops to maximise capture of water and nutrients. Roots are also a means of delivering natural plant-produced chemicals into soil with potentially beneficial impacts. These include biocontrol of soil-borne pests and diseases and inhibition of the nitrification process in soil (conversion of ammonium to nitrate) with possible benefits for improved nitrogen use efficiency and decreased nitrous oxide emission. The application of molecular methods to studies of soil organisms, and their interactions with roots, is providing new understanding of soil ecology and the basis for novel practical applications. Policy makers and those concerned with development of management approaches need to keep a watching brief on emerging possibilities from this fast-moving area of science. Nutrient management is a key challenge for global food production: there is an urgent need to increase nutrient availability to crops grown by smallholder farmers in developing countries. Many changes in practices including inter-cropping, inclusion of nitrogen-fixing crops, agroforestry and improved recycling have been clearly demonstrated to be beneficial: facilitating policies and practical strategies are needed to make these widely available, taking account of local economic and social conditions. In the longer term fertilizers will be essential for food security: policies and actions are needed to make these available and affordable to small farmers. In developed regions, and those developing rapidly such as China, strategies and policies to manage more precisely the necessarily large flows of nutrients in ways that minimise environmental damage are essential. A specific issue is to minimise emissions of nitrous oxide whilst ensuring sufficient nitrogen is available for adequate food production. Application of known strategies (through either regulation or education), technological developments, and continued research to improve understanding of basic processes will all play a part. Decreasing soil erosion is essential, both to maintain the soil resource and to minimise downstream damage such as sedimentation of rivers with adverse impacts on fisheries. Practical strategies are well known but often have financial implications for farmers. Examples of systems for paying one group of land users for ecosystem services affecting others exist in several parts of the world and serve as a model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding farmer behaviour is needed for local agricultural systems to produce food sustainably while facing multiple pressures. We synthesize existing literature to identify three fundamental questions that correspond to three distinct areas of knowledge necessary to understand farmer behaviour: 1) decision-making model; 2) cross-scale and cross-level pressures; and 3) temporal dynamics. We use this framework to compare five interdisciplinary case studies of agricultural systems in distinct geographical contexts across the globe. We find that these three areas of knowledge are important to understanding farmer behaviour, and can be used to guide the interdisciplinary design and interpretation of studies in the future. Most importantly, we find that these three areas need to be addressed simultaneously in order to understand farmer behaviour. We also identify three methodological challenges hindering this understanding: the suitability of theoretical frameworks, the trade-offs among methods and the limited timeframe of typical research projects. We propose that a triangulation research strategy that makes use of mixed methods, or collaborations between researchers across mixed disciplines, can be used to successfully address all three areas simultaneously and show how this has been achieved in the case studies. The framework facilitates interdisciplinary research on farmer behaviour by opening up spaces of structured dialogue on assumptions, research questions and methods employed in investigation.