988 resultados para Self motion
Resumo:
A simple but self-consistent microscopic theory for the time dependent solvation energy of both ions and dipoles is presented which includes, for the first time, the details of the self-motion of the probe on its own solvation dynamics. The theory leads to several interesting predictions. The most important of them is that, for dipolar solvation, both the rotational and the translational motions of the dipolar solute probe can significantly accelerate the rate of solvation. In addition, the rotational self-motion of the solute can also give rise to an additional mechanism of nonexponentiality in solvation time correlation functions in otherwise slow liquids. A comparison between the present theoretical predictions and the recent experimental studies of Maroncelli et al. on solvation dynamics of aniline in l-propanol seems to indicate that the said experiments have missed the initial solvent response up to about 45 ps. After mapping the experimental results on the redefined time scale, the theoretical results can explain the experimental results for solvation of aniline in 1-propanol very well. For ionic solvation, the translational motion is significant for light solutes only. For example, for Li+ in water, translational motion speeds up the solvation by about 20%. The present theory demonstrates that in dipolar solvation the partial quenching of the self-motion due to the presence of specific solute-solvent interactions (such as H-bonding) may lead to a much slower solvation than that when the self-motion is present. This point has been discussed. In addition, we present the theoretical results for solvation of aniline in propylene carbonate, Here, the solvation is predicted to be complete within 15-20 ps.
Resumo:
Spatial perspective-taking that involves imagined changes in one’s spatial orientation is facilitated by vestibular stimulation inducing a congruent sensation of self-motion. We examined further the role of vestibular resources in perspective-taking by evaluating whether aberrant and conflicting vestibular stimulation impaired perspective-taking performance. Participants (N = 39) undertook either an “own body transformation” (OBT)task, requiring speeded spatial judgments made from the perspective of a schematic figure, or a control task requiring reconfiguration of spatial mappings from one’s own visuo-spatial perspective. These tasks were performed both without and with vestibular stimulation by whole-body Coriolis motion, according to a repeated measures design, balanced for order. Vestibular stimulation was found to impair performance during the first minute post stimulus relative to the stationary condition. This disruption was task-specific, affecting only the OBT task and not the control task, and dissipated by the second minute post-stimulus. Our experiment thus demonstrates selective temporary impairment of perspective-taking from aberrant vestibular stimulation, implying that uncompromised vestibular resources are necessary for efficient perspective-taking. This finding provides evidence for an embodied mechanism for perspective-taking whereby vestibular input contributes to multisensory processing underlying bodily and social cognition. Ultimately, this knowledge may contribute to the design of interventions that help patients suffering sudden vertigo adapt to the cognitive difficulties caused by aberrant vestibular stimulation.
Resumo:
In this study, we compared direction detection thresholds of passive self-motion in the dark between artistic gymnasts and controls. Twenty-four professional female artistic gymnasts (ranging from 7 to 20 years) and age-matched controls were seated on a motion platform and asked to discriminate the direction of angular (yaw, pitch, roll) and linear (leftward–rightward) motion. Gymnasts showed lower thresholds for the linear leftward–rightward motion. Interestingly, there was no difference for the angular motions. These results show that the outstanding self-motion abilities in artistic gymnasts are not related to an overall higher sensitivity in self-motion perception. With respect to vestibular processing, our results suggest that gymnastic expertise is exclusively linked to superior interpretation of otolith signals when no change in canal signals is present. In addition, thresholds were overall lower for the older (14–20 years) than for the younger (7–13 years) participants, indicating the maturation of vestibular sensitivity from childhood to adolescence.
Resumo:
We investigated the role of horizontal body motion on the processing of numbers. We hypothesized that leftward self-motion leads to shifts in spatial attention and therefore facilitates the processing of small numbers, and vice versa, we expected that rightward self-motion facilitates the processing of large numbers. Participants were displaced by means of a motion platform during a parity judgment task. We found a systematic influence of self-motion direction on number processing, suggesting that the processing of numbers is intertwined with the processing of self-motion perception. The results differed from known spatial numerical compatibility effects in that self-motion exerted a differential influence on inner and outer numbers of the given interval. The results highlight the involvement of sensory body motion information in higher-order spatial cognition.
Resumo:
We investigated perceptual learning in self-motion perception. Blindfolded participants were displaced leftward or rightward by means of a motion platform and asked to indicate the direction of motion. A total of eleven participants underwent 3,360 practice trials, distributed over twelve (Experiment 1) or 6 days (Experiment 2). We found no improvement in motion discrimination in both experiments. These results are surprising since perceptual learning has been demonstrated for visual, auditory, and somatosensory discrimination. Improvements in the same task were found when visual input was provided (Experiment 3). The multisensory nature of vestibular information is discussed as a possible explanation of the absence of perceptual learning in darkness.
Resumo:
BACKGROUND: The observation of conspecifics influences our bodily perceptions and actions: Contagious yawning, contagious itching, or empathy for pain, are all examples of mechanisms based on resonance between our own body and others. While there is evidence for the involvement of the mirror neuron system in the processing of motor, auditory and tactile information, it has not yet been associated with the perception of self-motion. METHODOLOGY/PRINCIPAL FINDINGS: We investigated whether viewing our own body, the body of another, and an object in motion influences self-motion perception. We found a visual-vestibular congruency effect for self-motion perception when observing self and object motion, and a reduction in this effect when observing someone else's body motion. The congruency effect was correlated with empathy scores, revealing the importance of empathy in mirroring mechanisms. CONCLUSIONS/SIGNIFICANCE: The data show that vestibular perception is modulated by agent-specific mirroring mechanisms. The observation of conspecifics in motion is an essential component of social life, and self-motion perception is crucial for the distinction between the self and the other. Finally, our results hint at the presence of a "vestibular mirror neuron system".
Resumo:
Despite the close interrelation between vestibular and visual processing (e.g., vestibulo-ocular reflex), surprisingly little is known about vestibular function in visually impaired people. In this study, we investigated thresholds of passive whole-body motion discrimination (leftward vs. rightward) in nine visually impaired participants and nine age-matched sighted controls. Participants were rotated in yaw, tilted in roll, and translated along the interaural axis at two different frequencies (0.33 and 2 Hz) by means of a motion platform. Superior performance of visually impaired participants was found in the 0.33 Hz roll tilt condition. No differences were observed in the other motion conditions. Roll tilts stimulate the semicircular canals and otoliths simultaneously. The results could thus reflect a specific improvement in canal–otolith integration in the visually impaired and are consistent with the compensatory hypothesis, which implies that the visually impaired are able to compensate the absence of visual input.
Resumo:
To understand performance of evasive and interceptive actions it is important to know how people decide when to initiate a movement - initiating at the 'right' moment is often essential for successful performance. It has been proposed that initiation is triggered when a perceptually derived quantity reaches an invariant criterion value. Candidate quantities include time-to-collision (TTC), distance, and rate of image expansion ( ROE), all of which have received empirical support. We studied initiation of an evasive manoeuvre in a computer-simulated steering task in which the observer was required to steer through a stationary visual environment and avoid colliding with an obstacle in their path. The results could not be explained by hypotheses which propose that evasive manoeuvre initiation is based on a fixed criterion value of TTC or distance. The overall pattern was, however, consistent with the use of a criterion ROE value. This was further tested by analyses designed to directly evaluate whether the ROE value used to initiate the response was the same across experimental conditions. Only two of the six participants showed evidence for using the ROE strategy.
Resumo:
The goals of this study were to examine the visual information influence on body sway as a function of self- and object-motion perception and visual information quality. Participants that were aware (object-motion) and unaware (self-motion) of the movement of a moving room were asked to stand upright at five different distances from its frontal wall. The visual information effect on body sway decreased when participants were aware about the sensory manipulation. Moreover, while the visual influence on body sway decreased as the distance increased in the self-motion perception, no effects were observed in the object-motion mode. The overall results indicate that postural control system functioning can be altered by prior knowledge, and adaptation due to changes in sensory quality seem to occur in the self- but not in the object-motion perception mode. (C) 2004 Elsevier B.V.. All rights reserved.
Resumo:
Active head turns to the left and right have recently been shown to influence numerical cognition by shifting attention along the mental number line. In the present study, we found that passive whole-body motion influences numerical cognition. In a random-number generation task (Experiment 1), leftward and downward displacement of participants facilitated small number generation, whereas rightward and upward displacement facilitated the generation of large numbers. Influences of leftward and rightward motion were also found for the processing of auditorily presented numbers in a magnitude-judgment task (Experiment 2). Additionally, we investigated the reverse effect of the number-space association (Experiment 3). Participants were displaced leftward or rightward and asked to detect motion direction as fast as possible while small or large numbers were auditorily presented. When motion detection was difficult, leftward motion was detected faster when hearing small number and rightward motion when hearing large number. We provide new evidence that bottom-up vestibular activation is sufficient to interact with the higher-order spatial representation underlying numerical cognition. The results show that action planning or motor activity is not necessary to influence spatial attention. Moreover, our results suggest that self-motion perception and numerical cognition can mutually influence each other.
Resumo:
Optical flow (OF) is a powerful motion cue that captures the fusion of two important properties for the task of obstacle avoidance − 3D self-motion and 3D environmental surroundings. The problem of extracting such information for obstacle avoidance is commonly addressed through quantitative techniques such as time-to-contact and divergence, which are highly sensitive to noise in the OF image. This paper presents a new strategy towards obstacle avoidance in an indoor setting, using the combination of quantitative and structural properties of the OF field, coupled with the flexibility and efficiency of a machine learning system.The resulting system is able to effectively control the robot in real-time, avoiding obstacles in familiar and unfamiliar indoor environments, under given motion constraints. Furthermore, through the examination of the networks internal weights, we show how OF properties are being used toward the detection of these indoor obstacles.