978 resultados para Selective Ion-channel


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acid-sensing ion channels (ASICs) are neuronal Na(+) channels that belong to the epithelial Na(+) channel/degenerin family. ASICs are transiently activated by a rapid drop in extracellular pH. Conditions of low extracellular pH, such as ischemia and inflammation in which ASICs are thought to be active, are accompanied by increased protease activity. We show here that serine proteases modulate the function of ASIC1a and ASIC1b but not of ASIC2a and ASIC3. We show that protease exposure shifts the pH dependence of ASIC1a activation and steady-state inactivation to more acidic pH. As a consequence, protease exposure leads to a decrease in current response if ASIC1a is activated by a pH drop from pH 7.4. If, however, acidification occurs from a basal pH of approximately 7, protease-exposed ASIC1a shows higher activity than untreated ASIC1a. We provide evidence that this bi-directional regulation of ASIC1a function also occurs in neurons. Thus, we have identified a mechanism that modulates ASIC function and may allow ASIC1a to adapt its gating to situations of persistent extracellular acidification.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The function of acidification along the endocytic pathway is not well understood, in part because the perturbants used to modify compartmental pH have global effects and in some cases alter cytoplasmic pH. We have used a new approach to study the effect of pH perturbation on postendocytic traffic in polarized Madin–Darby canine kidney (MDCK) cells. Influenza M2 is a small membrane protein that functions as an acid-activated ion channel and can elevate the pH of the trans-Golgi network and endosomes. We used recombinant adenoviruses to express the M2 protein of influenza virus in polarized MDCK cells stably transfected with the polymeric immunoglobulin (Ig) receptor. Using indirect immunofluorescence and immunoelectron microscopy, M2 was found to be concentrated at the apical plasma membrane and in subapical vesicles; intracellular M2 colocalized partly with internalized IgA in apical recycling endosomes as well as with the trans-Golgi network marker TGN-38. Expression of M2 slowed the rate of IgA transcytosis across polarized MDCK monolayers. The delay in transport occurred after IgA reached the apical recycling endosome, consistent with the localization of intracellular M2. Apical recycling of IgA was also slowed in the presence of M2, whereas basolateral recycling of transferrin and degradation of IgA were unaffected. By contrast, ammonium chloride affected both apical IgA and basolateral transferrin release. Together, our data suggest that M2 expression selectively perturbs acidification in compartments involved in apical delivery without disrupting other postendocytic transport steps.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acid-sensing ion channels (ASICs) are neuronal Na(+)-selective channels that are transiently activated by extracellular acidification. ASICs are involved in fear and anxiety, learning, neurodegeneration after ischemic stroke, and pain sensation. The small molecule 2-guanidine-4-methylquinazoline (GMQ) was recently shown to open ASIC3 at physiological pH. We have investigated the mechanisms underlying this effect and the possibility that GMQ may alter the function of other ASICs besides ASIC3. GMQ shifts the pH dependence of activation to more acidic pH in ASIC1a and ASIC1b, whereas in ASIC3 this shift goes in the opposite direction and is accompanied by a decrease in its steepness. GMQ also induces an acidic shift of the pH dependence of inactivation of ASIC1a, -1b, -2a, and -3. As a consequence, the activation and inactivation curves of ASIC3 but not other ASICs overlap in the presence of GMQ at pH 7.4, thereby creating a window current. At concentrations >1 mm, GMQ decreases maximal peak currents by reducing the unitary current amplitude. Mutation of residue Glu-79 in the palm domain of ASIC3, previously shown to be critical for channel opening by GMQ, disrupted the GMQ effects on inactivation but not activation. This suggests that this residue is involved in the consequences of GMQ binding rather than in the binding interaction itself. This study describes the mechanisms underlying the effects of a novel class of ligands that modulate the function of all ASICs as well as activate ASIC3 at physiological pH.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The BCL-2 family of proteins is composed of both pro- and antiapoptotic regulators, although its most critical biochemical functions remain uncertain. The structural similarity between the BCL-XL monomer and several ion-pore-forming bacterial toxins has prompted electrophysiologic studies. Both BAX and BCL-2 insert into KCl-loaded vesicles in a pH-dependent fashion and demonstrate macroscopic ion efflux. Release is maximum at ≈pH 4.0 for both proteins; however, BAX demonstrates a broader pH range of activity. Both purified proteins also insert into planar lipid bilayers at pH 4.0. Single-channel recordings revealed a minimal channel conductance for BAX of 22 pS that evolved to channel currents with at least three subconductance levels. The final, apparently stable BAX channel had a conductance of 0.731 nS at pH 4.0 that changed to 0.329 nS when shifted to pH 7.0 but remained mildly Cl− selective and predominantly open. When BAX-incorporated lipid vesicles were fused to planar lipid bilayers at pH 7.0, a Cl−-selective (PK/PCl = 0.3) 1.5-nS channel displaying mild inward rectification was noted. In contrast, BCL-2 formed mildly K+-selective (PK/PCl = 3.9) channels with a most prominent initial conductance of 80 pS that increased to 1.90 nS. Fusion of BCL-2-incorporated lipid vesicles into planar bilayers at pH 7.0 also revealed mild K+ selectivity (PK/PCl = 2.4) with a maximum conductance of 1.08 nS. BAX and BCL-2 each form channels in artificial membranes that have distinct characteristics including ion selectivity, conductance, voltage dependence, and rectification. Thus, one role of these molecules may include pore activity at selected membrane sites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of hypotonic shock upon membrane C1 permeability of ROS 17/2.8 osteoblast-like cells was investigated using the patch-clamp technique. Hypotonic shock produced cell swelling that was accompanied by large amplitude, outwardly rectifying, currents that were active across the entire physiological range of membrane potentials (-80 to +100 mV). At strong depolarisations (> +50 mV) the currents exhibited time-dependent inactivation that followed a monoexponential time course. The currents were anion selective and exhibited a selectivity sequence of SCN- > I > Br- > Cl- > F- > gluconate. Current activation was unaffected by inhibitors of protein kinase (A (H-89) and tyrosine kinase (tyrphostin A25), and could not be mimicked by elevation of intracellular Ca2+ or activation of protein kinase C. Similarly, disruption of actin filaments by dihydrocytochalsin B, or generation of membrane tension by dipyridamole failed to elicit significant increases in cell chloride permeability. The mechanism of current activation is as yet undetermined. The currents were effectively inhibited by the chloride channel inhibitors NPPB and DIDS but resistant to DPC. A Cl- conductance with similar characteristics was found to be present in mouse primary cultured calvarial osteoblasts. The volume-sensitive Cl- current in ROS 17/2.8 cells was inhibited by arachidonic acid in two distinct phases. A rapid block that developed within 10 s, preceding a slower developing inhibitory phase that occurred approximately 90 s after onset of arachidonate superfusion. Arachidonic acid also induced kinetic modifications of the current which were evident as an acceleration of the time-dependent· inactivation exhibited at depolarised potentials. Inhibitors of cyclo-oxygenases, lipoxygenases and cytochrome P-4S0 were ineffectual against arachidonic acid's effects sugtgesting that arachidonic acid may elicit it's effects directly. Measurements of cell volume under hypotonic conditions showed that ROS 17/2,8 cells could effectively regulate their volume, However, effective inhibitors of the volume-sensitive CI" current drastically impaired this response suggesting that physiologically this current may have a vital role in cell volume regulation, In L6 skeletal myocytes, vasopressin was found to rapidiy hyperpolarise cells. This appears to occur as the result of activation of Ca2+ -sensitive K+ channels in a process dependent upon the presence of extracellular Ca2+.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

TRPV4 ion channels function in epidermal keratinocytes and in innervating sensory neurons; however, the contribution of the channel in either cell to neurosensory function remains to be elucidated. We recently reported TRPV4 as a critical component of the keratinocyte machinery that responds to ultraviolet B (UVB) and functions critically to convert the keratinocyte into a pain-generator cell after excess UVB exposure. One key mechanism in keratinocytes was increased expression and secretion of endothelin-1, which is also a known pruritogen. Here we address the question of whether TRPV4 in skin keratinocytes functions in itch, as a particular form of "forefront" signaling in non-neural cells. Our results support this novel concept based on attenuated scratching behavior in response to histaminergic (histamine, compound 48/80, endothelin-1), not non-histaminergic (chloroquine) pruritogens in Trpv4 keratinocyte-specific and inducible knock-out mice. We demonstrate that keratinocytes rely on TRPV4 for calcium influx in response to histaminergic pruritogens. TRPV4 activation in keratinocytes evokes phosphorylation of mitogen-activated protein kinase, ERK, for histaminergic pruritogens. This finding is relevant because we observed robust anti-pruritic effects with topical applications of selective inhibitors for TRPV4 and also for MEK, the kinase upstream of ERK, suggesting that calcium influx via TRPV4 in keratinocytes leads to ERK-phosphorylation, which in turn rapidly converts the keratinocyte into an organismal itch-generator cell. In support of this concept we found that scratching behavior, evoked by direct intradermal activation of TRPV4, was critically dependent on TRPV4 expression in keratinocytes. Thus, TRPV4 functions as a pruriceptor-TRP in skin keratinocytes in histaminergic itch, a novel basic concept with translational-medical relevance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The gene encoding the large conductance mechanosensitive ion channel (MscL) of Escherichia coli and several deletion mutants of mscL were cloned under the control of the T7 RNA polymerase promoter. Transformation of these constructs into an E. coli strain carrying an inducible T7 RNA polymerase gene allowed the specific production and labelling of MscL with [S-35]methionine. Preparation of membrane fractions of E. coli cells by sucrose gradient centrifugation indicated that the radiolabelled MscL was present in the inner cytoplasmic membrane in agreement with results of several studies. However, treatment of the labelled cells and cell membrane vesicles with various cross-linkers resulted in the majority of labelled protein migrating as a monomer with a small proportion of molecules (approximate to 25%) migrating as dimers and higher order multimers. This result is in contrast with a finding of a study suggesting that the channel exclusively forms hexamers in the cell membrane off. coli (1) and therefore may have profound implication for the activation and/or ''multimerization'' of the channel by mechanical stress exerted to the membrane. In addition, from the specific activity of the radiolabelled protein and the amount of protein in the cytoplasmic membrane fraction we estimated the number of MscL ion channels expressed under these conditions to be approximately 50 channels per single bacterium. (C) 1997 Academic Press.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The open channel diameter of Escherichia coli recombinant large-conductance mechanosensitive ion channels (MscL) was estimated using the model of Hille (Hille, B. 1968. Pharmacological modifications of the sodium channels of frog nerve. J. Gen. Physiol. 51:199-219)that relates the pore size to conductance. Based on the MscL conductance of 3.8 nS, and assumed pore lengths, a channel diameter of 34 to 46 Angstrom was calculated. To estimate the pore size experimentally, the effect of large organic ions on the conductance of MscL was examined. Poly-L-lysines (PLLs) with a diameter of 37 Angstrom or larger significantly reduced channel conductance, whereas spermine (similar to 15 Angstrom), PLL19 (similar to 25 Angstrom) and 1,1'-bis-(3-(1'-methyl-(4,4'-bipyridinium)-1-yl)-propyl)-4,4'-bipyridinium (similar to 30 Angstrom) had no effect. The smaller organic ions putrescine, cadaverine, spermine, and succinate all permeated the channel. We conclude that the open pore diameter of the MscL is similar to 40 Angstrom, indicating that the MscL has one of the largest channel pores yet described. This channel diameter is consistent with the proposed homohexameric model of the MscL.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Branding Lab

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: The purpose of this work was to study the influence of cell differentiation on the mRNA expression of transporters and channels in Caco-2 cells and to assess Caco-2 cells as a model for carrier-mediated drug transport in the intestines. METHOD: Gene mRNA expression was measured using a custom-designed microarray chip with 750 deoxyoligonucleotide probes (70mers). Each oligomer was printed four times on poly-lysine-coated glass slides. Expression profiles were expressed as ratio values between fluorescence intensities of Cy3 and Cy5 dye-labeled cDNA derived from poly(A) + RNA samples of Caco-2 cells and total RNA of human intestines. RESULTS: Significant differences in the mRNA expression profile of transporters and channels were observed upon differentiation of Caco-2 cells from 5 days to 2 weeks in culture, including changes for MAT8, S-protein, and Nramp2. Comparing Caco-2 cells of different passage number revealed few changes in mRNAs except for GLUT3, which was down-regulated 2.4-fold within 13 passage numbers. Caco-2 cells had a similar expression profile when either cultured in flasks or on filters but differed more strongly from human small and large intestine, regardless of the differentiation state of Caco-2 cells. Expression of several genes highly transcribed in small or large intestines differed fourfold or more in Caco-2 cells. CONCLUSIONS: Although Caco-2 cells have proven a suitable model for studying carrier-mediated transport in human intestines, the expression of specific transporter and ion channel genes may differ substantially.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The annual meeting of the French Ion Channels Society, held on the Mediterranean coast of France, is aimed at gathering the international scientific community working on various aspects of ion channels. In this report of the 19th edition of the meeting, held in September 2008, we summarize selected symposia on aspects of the ion channel field from fundamental to clinical research. The meeting is an opportunity for leading investigators as well as young researchers to present and discuss their recent advances and future challenges in the ion channel field.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a new lab-on-a-chip system for electrophysiological measurements on Xenopus oocytes. Xenopus oocytes are widely used host cells in the field of pharmacological studies and drug development. We developed a novel non-invasive technique using immobilized non-devitellinized cells that replaces the traditional "two-electrode voltage-clamp" (TEVC) method. In particular, rapid fluidic exchange was implemented on-chip to allow recording of fast kinetic events of exogenous ion channels expressed in the cell membrane. Reducing fluidic exchange times of extracellular reagent solutions is a great challenge with these large millimetre-sized cells. Fluidic switching is obtained by shifting the laminar flow interface in a perfusion channel under the cell by means of integrated poly-dimethylsiloxane (PDMS) microvalves. Reagent solution exchange times down to 20 ms have been achieved. An on-chip purging system allows to perform complex pharmacological protocols, making the system suitable for screening of ion channel ligand libraries. The performance of the integrated rapid fluidic exchange system was demonstrated by investigating the self-inhibition of human epithelial sodium channels (ENaC). Our results show that the response time of this ion channel to a specific reactant is about an order of magnitude faster than could be estimated with the traditional TEVC technique.