963 resultados para Seismic velocity
Resumo:
"Issued: May 15, 1963"--Cover ; "December 1962"--Title page.
Resumo:
The largest earthquake observed in the stable continental interior of the South American plate occurred in Serra do Tombador, Mato Grosso state - Brazil, on January 31,1955 with a magnitude of 6.2 m(b). Since then no other earthquake has been located near the 1955 epicentre. However, in Porto dos Gauchos, 100 km northeast of Serra do Tombador, a recurrent seismicity has been observed since 1959. Both Serra do Tombador and Porto dos Gauchos are located in the Phanerozoic Parecis basin. Two magnitude 5 earthquakes occurred in Porto dos Gauchos, in 1998 and 2005, with intensities up to VI and V, respectively. These two main shocks were followed by aftershock sequences lasting more than three years each. Local seismic stations have been deployed by the Seismological Observatory of the University of Brasilia since 1998 to study the ""Porto dos Gauchos"" seismic zone (PGSZ). A local seismic refraction survey was carried out with two explosions to help define the seismic velocity model. Both the 1998 and 2005 earthquake sequences occurred in the same WSW-ENE oriented fault zone with right-lateral strike-slip mechanisms. The epicentral zone is in the Parecis basin, near its northern border where there are buried grabens, generally trending WNW-ESE, such as the deep Mesoproterozoic Caiabis graben which lies partly beneath the Parecis basin. However, the epicentral distribution indicates that the 1998 and 2005 sequences are related to a N60 degrees E fault which probably crosses the entire Caiabis graben. The 1955 earthquake, despite the uncertainty in its epicentre, does not seem to be directly related to any buried graben either. The seismicity in the Porto dos Gauchos seismic zone, therefore, is not directly related to rifted crust. The probable direction of the maximum horizontal stress near Porto dos Gauchos is roughly E-W, consistent with other focal mechanisms further south in the Pantanal basin and Paraguay. but seems to be different from the NW-SE direction observed further north in the Amazon basin. The recurrent seismicity observed in Porto dos Gauchos, and the large 1955 earthquake nearby, make this area of the Parecis basin one of the most important seismic zones of Brazil. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Compressional and shear velocities, density, and porosity were measured for 22 serpentinized peridotites recovered during ODP Leg 125. The densities of the samples vary from 2.40 to 2.86 g/cm**3, whereas the compressional velocities at 200 MPa are between 4.60 and 6.47 km/s. A positive linear trend exists between both compressional and shear velocities and density. The high porosity in serpentinized peridotites decreases the density and seismic velocity.
Resumo:
Two seismic surveys were carried out on the high-altitude glacier saddle, Colle Gnifetti, Monte Rosa, Italy/Switzerland. Explosive and vibroseismic sources were tested to explore the best way to generate seismic waves to deduce shallow and intermediate properties (<100 m) of firn and ice. The explosive source (SISSY) excites strong surface and diving waves, degrading data quality for processing; no englacial reflections besides the noisy bed reflector are visible. However, the strong diving waves are analyzed to derive the density distribution of the firn pack, yielding results similar to a nearby ice core. The vibrator source (ElViS), used in both P- and SH-wave modes, produces detectable laterally coherent reflections within the firn and ice column. We compare these with ice-core and radar data. The SH-wave data are particularly useful in providing detailed, high-resolution information on firn and ice stratigraphy. Our analyses demonstrate the potential of seismic methods to determine physical properties of firn and ice, particularly density and potentially also crystal-orientation fabric.
Resumo:
The Deep Sea Drilling Project, in addition to providing valuable information on the history and processes of development of the ocean, has significantly contributed to our knowledge of the chemical and physical nature of the upper oceanic crust. Among the important physical properties of the crust are its seismic velocity and structure, the interpretation of which requires laboratory studies of seismic velocities in oceanic rocks.
Resumo:
The CIROS-1 drillhole, which in 1986 reached a depth of 700 m below the seafloor, is still the only deep hole that can provide information on the velocity structure of the upper crust in McMurdo Sound and the Ross Sea, Antarctica. A careful review and quality control of the downhole logging data of CIROS-1 resulted in a new porosity depth function that is consistent with porosity data from the MSSTS-1 and CRP-1 drillholes. Using existing porosity-velocity equations, it was possible for the first time to obtain reliable velocity information for the upper 700 m of strata off the Victoria Land coast. The calculated synthetic seismograms, based on downhole velocity and density data, fit very well with the existing seismic lines IT90A-71, PD90-12, and NBP9601-89. The quality of the correlation confirms that the average velocity of the top 700 m of strata is about 2 000-2 300 m/s, and not 2 800-3 000 m/s, as was previously assumed. In consequence, these distinctly lower velocities result in shallower depths for the seismic unconformities V3/V4 andV4/V5 and thus may have important implications for further drilling off Cape Roberts.
Resumo:
Since 1995 the eruption of the andesitic Soufrière Hills Volcano (SHV), Montserrat, has been studied in substantial detail. As an important contribution to this effort, the Seismic Experiment with Airgunsource-Caribbean Andesitic Lava Island Precision Seismo-geodetic Observatory (SEA-CALIPSO) experiment was devised to image the arc crust underlying Montserrat, and, if possible, the magma system at SHV using tomography and reflection seismology. Field operations were carried out in October–December 2007, with deployment of 238 seismometers on land supplementing seven volcano observatory stations, and with an array of 10 ocean-bottom seismometers deployed offshore. The RRS James Cook on NERC cruise JC19 towed a tuned airgun array plus a digital 48-channel streamer on encircling and radial tracks for 77 h about Montserrat during December 2007, firing 4414 airgun shots and yielding about 47 Gb of data. The main objecctives of the experiment were achieved. Preliminary analyses of these data published in 2010 generated images of heterogeneous high-velocity bodies representing the cores of volcanoes and subjacent intrusions, and shallow areas of low velocity on the flanks of the island that reflect volcaniclastic deposits and hydrothermal alteration. The resolution of this preliminary work did not extend beyond 5 km depth. An improved three-dimensional (3D) seismic velocity model was then obtained by inversion of 181 665 first-arrival travel times from a more-complete sampling of the dataset, yielding clear images to 7.5 km depth of a low-velocity volume that was interpreted as the magma chamber which feeds the current eruption, with an estimated volume 13 km3. Coupled thermal and seismic modelling revealed properties of the partly crystallized magma. Seismic reflection analyses aimed at imaging structures under southern Montserrat had limited success, and suggest subhorizontal layering interpreted as sills at a depth of between 6 and 19 km. Seismic reflection profiles collected offshore reveal deep fans of volcaniclastic debris and fault offsets, leading to new tectonic interpretations. This chapter presents the project goals and planning concepts, describes in detail the campaigns at sea and on land, summarizes the major results, and identifies the key lessons learned.
Resumo:
Physical properties provide valuable information about the nature and behavior of rocks and minerals. The changes in rock physical properties generate petrophysical contrasts between various lithologies, for example, between shocked and unshocked rocks in meteorite impact structures or between various lithologies in the crust. These contrasts may cause distinct geophysical anomalies, which are often diagnostic to their primary cause (impact, tectonism, etc). This information is vital to understand the fundamental Earth processes, such as impact cratering and associated crustal deformations. However, most of the present day knowledge of changes in rock physical properties is limited due to a lack of petrophysical data of subsurface samples, especially for meteorite impact structures, since they are often buried under post-impact lithologies or eroded. In order to explore the uppermost crust, deep drillings are required. This dissertation is based on the deep drill core data from three impact structures: (i) the Bosumtwi impact structure (diameter 10.5 km, 1.07 Ma age; Ghana), (ii) the Chesapeake Bay impact structure (85 km, 35 Ma; Virginia, U.S.A.), and (iii) the Chicxulub impact structure (180 km, 65 Ma; Mexico). These drill cores have yielded all basic lithologies associated with impact craters such as post-impact lithologies, impact rocks including suevites and breccias, as well as fractured and unfractured target rocks. The fourth study case of this dissertation deals with the data of the Paleoproterozoic Outokumpu area (Finland), as a non-impact crustal case, where a deep drilling through an economically important ophiolite complex was carried out. The focus in all four cases was to combine results of basic petrophysical studies of relevant rocks of these crustal structures in order to identify and characterize various lithologies by their physical properties and, in this way, to provide new input data for geophysical modellings. Furthermore, the rock magnetic and paleomagnetic properties of three impact structures, combined with basic petrophysics, were used to acquire insight into the impact generated changes in rocks and their magnetic minerals, in order to better understand the influence of impact. The obtained petrophysical data outline the various lithologies and divide rocks into four domains. Based on target lithology the physical properties of the unshocked target rocks are controlled by mineral composition or fabric, particularly porosity in sedimentary rocks, while sediments result from diverse sedimentation and diagenesis processes. The impact rocks, such as breccias and suevites, strongly reflect the impact formation mechanism and are distinguishable from the other lithologies by their density, porosity and magnetic properties. The numerous shock features resulting from melting, brecciation and fracturing of the target rocks, can be seen in the changes of physical properties. These features include an increase in porosity and subsequent decrease in density in impact derived units, either an increase or a decrease in magnetic properties (depending on a specific case), as well as large heterogeneity in physical properties. In few cases a slight gradual downward decrease in porosity, as a shock-induced fracturing, was observed. Coupled with rock magnetic studies, the impact generated changes in magnetic fraction the shock-induced magnetic grain size reduction, hydrothermal- or melting-related magnetic mineral alteration, shock demagnetization and shock- or temperature-related remagnetization can be seen. The Outokumpu drill core shows varying velocities throughout the drill core depending on the microcracking and sample conditions. This is similar to observations by Kern et al., (2009), who also reported the velocity dependence on anisotropy. The physical properties are also used to explain the distinct crustal reflectors as observed in seismic reflection studies in the Outokumpu area. According to the seismic velocity data, the interfaces between the diopside-tremolite skarn layer and either serpentinite, mica schist or black schist are causing the strong seismic reflectivities.
Resumo:
In the complex structure areas, velocity field building and structure mapping are important for seismic exploration. With the development of seismic exploration, the methods of structure mapping, reservoir prediction and reservoir description all require high precious velocity field. And more accurate depth-structure maps are required for well site design. Aiming at the problems and defects in velocity analysis and structure mapping in oil seismic exploration, the paper which is based on the studies of real data in several areas combines the theories with practical application, and analyzes the precision and applicability of several methods of velocity model building. After that, the following methods are mainly studied: the coherence inversion methods based on the pre-stack CMP gathers or stacking velocity; the interval velocity inversion methods constrained by multi-well; the Random Simulation method; 3D Image Ray Map Migration method and the structure mapping in floating datum and in fixed datum, and then we conclude the method of building high precious seismic velocity field and structure mapping with variable velocity. Firstly, the paper analyses the distributing rule of the velocity variation in the areas with complex structures in the northwest of China, then points out that velocity is a crucial factor which influences the precision of structure mapping, and the velocity variations have something to do with the shapes of the structures, the variety of lithology and so on. The key point of improving the precision of seismic velocity field is to obtain a structure mapping with high precision. We also describe the range and conditions of these methods. Secondly, by comparing many popular methods of velocity model building, we propose a new method in the use of velocity model building. The new method is more effective in velocity model building under every kind of complex condition and is worthy of spreading. At last, the paper fingers out that it is a system engineering to study variable velocity mapping in every kind of complex structure areas. Every step of the work can affect the final results. So it is important to build high efficient and practical velocity model and the flows of mapping processing. The paper builds the flows and gives some examples. The method has been applied in more than ten exploring surveys. The application proves that this method could bring good effect on researching on low-amplitude trap, reservoir prediction, reservoir description and the integrated research of oil&gas geology. Keywords: structure mapping velocity model building complex structure variable velocity media
Resumo:
As the first arrival of seismic phase in deep seismic sounding, Pg is the important data for studying the attributes of the sedimentary layers and the shape of crystalline basement because of its high intensity and reliable detection. Conventionally, the sedimentary cover is expressed as isotropic, linear increasing model in the interpretation of Pg event. Actually, the sedimentary medium should be anisotropic as preferred cracks or fractures and thin layers are common features in the upper crust, so the interpretation of Pg event needs to be taken account of seismic velocity anisotropy. Traveltime calculation is the base of data processing and interpretation. Here, we only study the type of elliptical anisotropy for the poor quality and insufficiency of DSS data. In this thesis, we first investigate the meaning of elliptical anisotropy in the study of crustal structure and attribute, then derive Pg event’s traveltime-offset relationship by assuming a linear increasing velocity model with elliptical anisotropy and present the invert scheme from Pg traveltime-offset dataset to seismic velocity and its anisotropy of shallow crustal structure. We compare the Pg traveltime calculated by our analytic formula with numerical calculating method to test the accuracy. To get the lateral variation of elliptical anisotropy along the profiling, a tomography inversion method with the derived formula is presented, where the profile is divided into rectangles. Anisotropic imaging of crustal structure and attribute is efficient method for crust study. The imaging result can help us interprete the seismic data and discover the attribute of the rock to analyze the interaction between layers. Traveltime calculation is the base of image. Base on the ray tracing equations, the paper present a realization of three dimension of layer model with arbitrary anisotropic type and an example of Pg traveltime calculation in arbitrary anisotropic type is presented. The traveltime calculation method is complex and it only adapts to nonlinear inversion. Perturbation method of travel-time calculation in anisotropy is the linearization approach. It establishes the direct relation between seismic parameters and travetime and it is fit for inversion in anisotropic structural imaging. The thesis presents a P-wave imaging method of layer media for TTI. Southeastern China is an important part of the tectonic framework concerning the continental margin of eastern China and is commonly assumed to comprise the Yangtze block and the Cathaysia block, the two major tectonic units in the region. It’s a typical geological and geophysical zone. In this part, we fit the traveltime of Pg phase by the raytracing numerical method. But the method is not suitable here because the inefficiency of numerical method and the method itself. By the analytic method, we fit the Pg and Sg and get the lateral variation of elliptical anisotropy and then discuss its implication. The northeastern margin of Qinghai-Tibetan plateau is typical because it is the joint area of Eurasian plate and Indian plate and many strong earthquakes have occurred there in recent years.We use the Pg data to get elliptical anisotropic variation and discuss the possible meaning.
Resumo:
The composition of the continental crust has long been a subject of interest to earth scientists as it can provide key information about the crustal growth and evolution of the continents. In this paper we make a comparative study on the lithological discrimination schemes featuring with the use of different seismic attributes, such as P-wave velocity, P- to S-wave velocity ratio, acoustic or elastic impedances, Lame impedances and high-sensitive identification factors. The results demonstrate that Lame impedances have more powerful constrains than other seismic attributes. In order to fully take the advantage of make the best of the different seismic response of crustal rock, we firstly use seismic attribute that have weak distinguish power to construct loose constrained lithological model, then use seismic attributes that have stronger distinguish power to tighten the constrains of lithological discrimination. We propose a joint scheme (chain constrain technique) by combing all available constrains to reduce the non-uniqueness in mapping rock distribution. We adopt chain constrain technique to construct lithological model beneath Tunxi-Wenzhou transect, Southeastern China, Manzhouli-Suifenhe transect, Northeastern China, and geophysical profile in Bohai Bay Basin, North China. The results can be suumarized as the follows: (1) We compare the sensitivity of different seismic factor constraints on rock types, and conclude that Lame impedances have tighter constrains than seismic velocity, Vp/Vs, density. (2) We propose chain constrains to construct lithological model from integrated geophysical data, and reduce the non-uniqueness in mapping rock distribution. (3) We reconstruct crustal lithological model beneath Tunxi-Wenzhou transect, Southeastern China. The results suggested that Jiangshan-Shaoxing fault is a crust-scale, and it is the boundary between Cathaysia and Yanthze blocks. (4) We construct crustal lithological model beneath Manzhouli-Suifenhe transect, Northeastern China. (5) We map the petrologic distribution along a geophysical profile in Bohai Bay Basin, North China, and construct a three-layered petrology model from the depth 2 km to about 10 km, consisted of basalt (the first layer), pelitic siltstone (the second layer), and silty mudstone and fine sandstone (the third layer).