989 resultados para Seismic Fragility Functions, moment resisting frame, hazus, abaqus


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding the seismic vulnerability of building structures is important for seismic engineers, building owners, risk insurers and governments. Seismic vulnerability defines a buildings predisposition to be damaged as a result of an earthquake of a given severity. There are two components to seismic risk; the seismic hazard and the exposure of the structural inventory to any given earthquake event. This paper demonstrates the development of fragility curves at different damage states using a detailed mechanical model of a moment resisting reinforced concrete structure typical of Southern Europe. The mechanical model consists of a complex three-dimensional finite element model of the reinforced concrete moment resisting frame structure and is used to define the damage states through pushover analysis. Fragility curves are also defined using the HAZUS macroseismic methodology and the Risk-UE macroseismic methodology. Comparison of the mechanically modelled and HAZUS fragility curve shows good agreement while the Risk-UE methodology shows reasonably poor agreement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper investigates the accuracy of new finite element modelling approaches to predict the behaviour of bolted moment-connections between cold-formed steel members, formed by using brackets bolted to the webs of the section, under low cycle fatigue. ABAQUS software is used as a modelling platform. Such joints are used for portal frames and potentially have good seismic resisting capabilities, which is important for construction in developing countries. The modelling implications of a two-dimensional beam element model, a three-dimensional shell element model and a three-dimensional solid element model are reported. Quantitative and qualitative results indicate that the three-dimensional quadratic S8R shell element model most accurately predicts the hysteretic behaviour and energy dissipation capacity of the connection when compared to the test results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dynamic properties of a structure are a function of its physical properties, and changes in the physical properties of the structure, including the introduction of structural damage, can cause changes in its dynamic behavior. Structural health monitoring (SHM) and damage detection methods provide a means to assess the structural integrity and safety of a civil structure using measurements of its dynamic properties. In particular, these techniques enable a quick damage assessment following a seismic event. In this thesis, the application of high-frequency seismograms to damage detection in civil structures is investigated.

Two novel methods for SHM are developed and validated using small-scale experimental testing, existing structures in situ, and numerical testing. The first method is developed for pre-Northridge steel-moment-resisting frame buildings that are susceptible to weld fracture at beam-column connections. The method is based on using the response of a structure to a nondestructive force (i.e., a hammer blow) to approximate the response of the structure to a damage event (i.e., weld fracture). The method is applied to a small-scale experimental frame, where the impulse response functions of the frame are generated during an impact hammer test. The method is also applied to a numerical model of a steel frame, in which weld fracture is modeled as the tensile opening of a Mode I crack. Impulse response functions are experimentally obtained for a steel moment-resisting frame building in situ. Results indicate that while acceleration and velocity records generated by a damage event are best approximated by the acceleration and velocity records generated by a colocated hammer blow, the method may not be robust to noise. The method seems to be better suited for damage localization, where information such as arrival times and peak accelerations can also provide indication of the damage location. This is of significance for sparsely-instrumented civil structures.

The second SHM method is designed to extract features from high-frequency acceleration records that may indicate the presence of damage. As short-duration high-frequency signals (i.e., pulses) can be indicative of damage, this method relies on the identification and classification of pulses in the acceleration records. It is recommended that, in practice, the method be combined with a vibration-based method that can be used to estimate the loss of stiffness. Briefly, pulses observed in the acceleration time series when the structure is known to be in an undamaged state are compared with pulses observed when the structure is in a potentially damaged state. By comparing the pulse signatures from these two situations, changes in the high-frequency dynamic behavior of the structure can be identified, and damage signals can be extracted and subjected to further analysis. The method is successfully applied to a small-scale experimental shear beam that is dynamically excited at its base using a shake table and damaged by loosening a screw to create a moving part. Although the damage is aperiodic and nonlinear in nature, the damage signals are accurately identified, and the location of damage is determined using the amplitudes and arrival times of the damage signal. The method is also successfully applied to detect the occurrence of damage in a test bed data set provided by the Los Alamos National Laboratory, in which nonlinear damage is introduced into a small-scale steel frame by installing a bumper mechanism that inhibits the amount of motion between two floors. The method is successfully applied and is robust despite a low sampling rate, though false negatives (undetected damage signals) begin to occur at high levels of damage when the frequency of damage events increases. The method is also applied to acceleration data recorded on a damaged cable-stayed bridge in China, provided by the Center of Structural Monitoring and Control at the Harbin Institute of Technology. Acceleration records recorded after the date of damage show a clear increase in high-frequency short-duration pulses compared to those previously recorded. One undamage pulse and two damage pulses are identified from the data. The occurrence of the detected damage pulses is consistent with a progression of damage and matches the known chronology of damage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a seismic response investigation into a code designed concentrically braced frame structure that is subjected to but not designed for in-plan mass eccentricity. The structure has an accidental uneven distribution of mass in plan resulting in an increased torsional component of vibration. The level of inelasticity that key structural elements in plan mass asymmetric structures are subjected to is important when analysing their ability to sustain uneven seismic demands. In-plan mass asymmetry of moment resisting frame and shear wall type structures have received significant investigation, however, the plan asymmetric response of braced frame type structures is less well understood. A three-dimensional non-linear time history analysis (NLTHA) model is created to capture the torsional response of the plan mass asymmetric structure to quantify the additional ductility demand, interstorey drifts and floor rotations. Results show that the plan mass asymmetric structure performs well in terms of ductility demand, but poorly in terms of interstorey drifts and floor rotations when compared to the plan mass symmetric structure. New linear relationships are developed between the normalised ductility demand and normalised slenderness of the bracing on the sides of the plan mass symmetric/asymmetric structures that the mass is distributed towards and away from.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research work faces the problem of insertion of viscous dampers into Moment Resisiting Frames (MRF) for maximum efficiency in mitigation of the seismic effects. The work would lead to a precise design indication. The fundamental result of the thesis consists in showing that, even for moment-resisting structures, you can design a system of added viscous dampers able to achieve target levels of performances. Ie given the reduction factor in the seismic response, discover the characteristics of the viscous dampers which allow to achieve it.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"February 1973."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis, we develop an efficient collapse prediction model, the PFA (Peak Filtered Acceleration) model, for buildings subjected to different types of ground motions.

For the structural system, the PFA model covers modern steel and reinforced concrete moment-resisting frame buildings (potentially reinforced concrete shear wall buildings). For ground motions, the PFA model covers ramp-pulse-like ground motions, long-period ground motions, and short-period ground motions.

To predict whether a building will collapse in response to a given ground motion, we first extract long-period components from the ground motion using a Butterworth low-pass filter with suggested order and cutoff frequency. The order depends on the type of ground motion, and the cutoff frequency depends on the building’s natural frequency and ductility. We then compare the filtered acceleration time history with the capacity of the building. The capacity of the building is a constant for 2-dimentional buildings and a limit domain for 3-dimentional buildings. If the filtered acceleration exceeds the building’s capacity, the building is predicted to collapse. Otherwise, it is expected to survive the ground motion.

The parameters used in PFA model, which include fundamental period, global ductility and lateral capacity, can be obtained either from numerical analysis or interpolation based on the reference building system proposed in this thesis.

The PFA collapse prediction model greatly reduces computational complexity while archiving good accuracy. It is verified by FEM simulations of 13 frame building models and 150 ground motion records.

Based on the developed collapse prediction model, we propose to use PFA (Peak Filtered Acceleration) as a new ground motion intensity measure for collapse prediction. We compare PFA with traditional intensity measures PGA, PGV, PGD, and Sa in collapse prediction and find that PFA has the best performance among all the intensity measures.

We also provide a close form in term of a vector intensity measure (PGV, PGD) of the PFA collapse prediction model for practical collapse risk assessment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the 1994 Mw 6.7 Northridge and 1995 Mw 6.9 Kobe earthquakes, steel moment-frame buildings were exposed to an unexpected flaw. The commonly utilized welded unreinforced flange, bolted web connections were observed to experience brittle fractures in a number of buildings, even at low levels of seismic demand. A majority of these buildings have not been retrofitted and may be susceptible to structural collapse in a major earthquake.

This dissertation presents a case study of retrofitting a 20-story pre-Northridge steel moment-frame building. Twelve retrofit schemes are developed that present some range in degree of intervention. Three retrofitting techniques are considered: upgrading the brittle beam-to-column moment resisting connections, and implementing either conventional or buckling-restrained brace elements within the existing moment-frame bays. The retrofit schemes include some that are designed to the basic safety objective of ASCE-41 Seismic Rehabilitation of Existing Buildings.

Detailed finite element models of the base line building and the retrofit schemes are constructed. The models include considerations of brittle beam-to-column moment resisting connection fractures, column splice fractures, column baseplate fractures, accidental contributions from ``simple'' non-moment resisting beam-to-column connections to the lateral force-resisting system, and composite actions of beams with the overlying floor system. In addition, foundation interaction is included through nonlinear translational springs underneath basement columns.

To investigate the effectiveness of the retrofit schemes, the building models are analyzed under ground motions from three large magnitude simulated earthquakes that cause intense shaking in the greater Los Angeles metropolitan area, and under recorded ground motions from actual earthquakes. It is found that retrofit schemes that convert the existing moment-frames into braced-frames by implementing either conventional or buckling-restrained braces are effective in limiting structural damage and mitigating structural collapse. In the three simulated earthquakes, a 20% chance of simulated collapse is realized at PGV of around 0.6 m/s for the base line model, but at PGV of around 1.8 m/s for some of the retrofit schemes. However, conventional braces are observed to deteriorate rapidly. Hence, if a braced-frame that employs conventional braces survives a large earthquake, it is questionable how much service the braces provide in potential aftershocks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reinforced concrete buildings in low-to-moderate seismic zones are often designed only for gravity loads in accordance with the non-seismic detailing provisions. Deficient detailing of columns and beam-column joints can lead to unpredictable brittle failures even under moderate earthquakes. Therefore, a reliable estimate of structural response is required for the seismic evaluation of these structures. For this purpose, analytical models for both interior and exterior slab-beam-column subassemblages and for a 1/3 scale model frame were implemented into the nonlinear finite element platform OpenSees. Comparison between the analytical results and experimental data available in the literature is carried out using nonlinear pushover analyses and nonlinear time history analysis for the subassemblages and the model frame, respectively. Furthermore, the seismic fragility assessment of reinforced concrete buildings is performed on a set of non-ductile frames using nonlinear time history analyses. The fragility curves, which are developed for various damage states for the maximum interstory drift ratio are characterized in terms of peak ground acceleration and spectral acceleration using a suite of ground motions representative of the seismic hazard in the region.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-06

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, the accuracy and reliability of fully nonlinear method against equivalent linear method for dynamic analysis of soil-structure interaction is investigated comparing the predicted results of both numerical procedures with the results of experimental shaking table tests. An enhanced numerical soil-structure model has been developed which treats the behaviour of the soil and the structure with equal rigour. The soil-structural model comprises a 15 storey structural model resting on a soft soil inside a laminar soil container. The structural model was analysed under three different conditions: (i) fixed base model performing conventional time history dynamic analysis, (ii) flexible base model (considering full soil-structure interaction) conducting equivalent linear dynamic analysis, and (iii) flexible base model performing fully nonlinear dynamic analysis. The results of the above mentioned three cases in terms of lateral storey deflections and inter-storey drifts are determined and compared with the experimental results of shaking table tests. Comparing the experimental results with the numerical analysis predictions, it is noted that equivalent linear method of dynamic analysis underestimates the inelastic seismic response of mid-rise moment resisting building frames resting on soft soils in comparison to the fully nonlinear dynamic analysis method. Thus, inelastic design procedure, using equivalent linear method, cannot adequately guarantee the structural safety for mid-rise building frames resting on soft soils. However, results obtained from the fully nonlinear method of analysis fit the experimental results reasonably well. Therefore, this method is recommended to be used by practicing engineers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper treats the seismic mitigation of medium rise frame-shear wall structures and building facade systems using passive damping devices. The frame shear wall structures have embedded viscoelastic and friction dampers in different configurations and placed in various locations in the structure. Influence of damper type, configuration and location are investigated. Results for tip deflections which provide an overall evaluation of the seismic response of the structure, are determined. Seismic mitigation of building facade systems in which visco-elastic dampers are fitted at the horizontal connections between the facades and the frame, instead of the traditional rigid connections, are also treated. Finite element techniques are used to model and analyse the two structural systems under different earthquake loadings, scaled to the same peak ground acceleration for meaningful comparison of responses. Results demonstrate the feasibility of these techniques for seismic mitigation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CHAPTER 1:FLUID-VISCOUS DAMPERS In this chapter the fluid-viscous dampers are introduced. The first section is focused on the technical characteristics of these devices, their mechanical behavior and the latest evolution of the technology whose they are equipped. In the second section we report the definitions and the guide lines about the design of these devices included in some international codes. In the third section the results of some experimental tests carried out by some authors on the response of these devices to external forces are discussed. On this purpose we report some technical schedules that are usually enclosed to the devices now available on the international market. In the third section we show also some analytic models proposed by various authors, which are able to describe efficiently the physical behavior of the fluid-viscous dampers. In the last section we propose some cases of application of these devices on existing structures and on new-construction structures. We show also some cases in which these devices have been revealed good for aims that lies outside the reduction of seismic actions on the structures. CHAPTER 2:DESIGN METHODS PROPOSED IN LITERATURE In this chapter the more widespread design methods proposed in literature for structures equipped by fluid-viscous dampers are introduced. In the first part the response of sdf systems in the case of harmonic external force is studied, in the last part the response in the case of random external force is discussed. In the first section the equations of motion in the case of an elastic-linear sdf system equipped with a non-linear fluid-viscous damper undergoing a harmonic force are introduced. This differential problem is analytically quite complex and it’s not possible to be solved in a closed form. Therefore some authors have proposed approximate solution methods. The more widespread methods are based on equivalence principles between a non-linear device and an equivalent linear one. Operating in this way it is possible to define an equivalent damping ratio and the problem becomes linear; the solution of the equivalent problem is well-known. In the following section two techniques of linearization, proposed by some authors in literature, are described: the first technique is based on the equivalence of the energy dissipated by the two devices and the second one is based on the equivalence of power consumption. After that we compare these two techniques by studying the response of a sdf system undergoing a harmonic force. By introducing the equivalent damping ratio we can write the equation of motion of the non-linear differential problem in an implicit form, by dividing, as usual, for the mass of the system. In this way, we get a reduction of the number of variables, by introducing the natural frequency of the system. The equation of motion written in this form has two important properties: the response is linear dependent on the amplitude of the external force and the response is dependent on the ratio of the frequency of the external harmonic force and the natural frequency of the system only, and not on their single values. All these considerations, in the last section, are extended to the case of a random external force. CHAPTER 3: DESIGN METHOD PROPOSED In this chapter the theoretical basis of the design method proposed are introduced. The need to propose a new design method for structures equipped with fluid-viscous dampers arises from the observation that the methods reported in literature are always iterative, because the response affects some parameters included in the equation of motion (such as the equivalent damping ratio). In the first section the dimensionless parameterε is introduced. This parameter has been obtained from the definition of equivalent damping ratio. The implicit form of the equation of motion is written by introducing the parameter ε, instead of the equivalent damping ratio. This new implicit equation of motions has not any terms affected by the response, so that once ε is known the response can be evaluated directly. In the second section it is discussed how the parameter ε affects some characteristics of the response: drift, velocity and base shear. All the results described till this point have been obtained by keeping the non-linearity of the behavior of the dampers. In order to get a linear formulation of the problem, that is possible to solve by using the well-known methods of the dynamics of structures, as we did before for the iterative methods by introducing the equivalent damping ratio, it is shown how the equivalent damping ratio can be evaluated from knowing the value of ε. Operating in this way, once the parameter ε is known, it is quite easy to estimate the equivalent damping ratio and to proceed with a classic linear analysis. In the last section it is shown how the parameter ε could be taken as reference for the evaluation of the convenience of using non-linear dampers instead of linear ones on the basis of the type of external force and the characteristics of the system. CHAPTER 4: MULTI-DEGREE OF FREEDOM SYSTEMS In this chapter the design methods of a elastic-linear mdf system equipped with non-linear fluidviscous dampers are introduced. It has already been shown that, in the sdf systems, the response of the structure can be evaluated through the estimation of the equivalent damping ratio (ξsd) assuming the behavior of the structure elastic-linear. We would to mention that some adjusting coefficients, to be applied to the equivalent damping ratio in order to consider the actual behavior of the structure (that is non-linear), have already been proposed in literature; such coefficients are usually expressed in terms of ductility, but their treatment is over the aims of this thesis and we does not go into further. The method usually proposed in literature is based on energy equivalence: even though this procedure has solid theoretical basis, it must necessary include some iterative process, because the expression of the equivalent damping ratio contains a term of the response. This procedure has been introduced primarily by Ramirez, Constantinou et al. in 2000. This procedure is reported in the first section and it is defined “Iterative Method”. Following the guide lines about sdf systems reported in the previous chapters, it is introduced a procedure for the assessment of the parameter ε in the case of mdf systems. Operating in this way the evaluation of the equivalent damping ratio (ξsd) can be done directly without implementing iterative processes. This procedure is defined “Direct Method” and it is reported in the second section. In the third section the two methods are analyzed by studying 4 cases of two moment-resisting steel frames undergoing real accelerogramms: the response of the system calculated by using the two methods is compared with the numerical response obtained from the software called SAP2000-NL, CSI product. In the last section a procedure to create spectra of the equivalent damping ratio, affected by the parameter ε and the natural period of the system for a fixed value of exponent α, starting from the elasticresponse spectra provided by any international code, is introduced.